These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 26531101)

  • 21. Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development.
    Tanaka H; Dhonukshe P; Brewer PB; Friml J
    Cell Mol Life Sci; 2006 Dec; 63(23):2738-54. PubMed ID: 17013565
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Going the distance with auxin: unravelling the molecular basis of auxin transport.
    Bennett MJ; Marchant A; May ST; Swarup R
    Philos Trans R Soc Lond B Biol Sci; 1998 Sep; 353(1374):1511-5. PubMed ID: 9800211
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings.
    Vandenbussche F; Petrásek J; Zádníková P; Hoyerová K; Pesek B; Raz V; Swarup R; Bennett M; Zazímalová E; Benková E; Van Der Straeten D
    Development; 2010 Feb; 137(4):597-606. PubMed ID: 20110325
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Auxin Import and Local Auxin Biosynthesis Are Required for Mitotic Divisions, Cell Expansion and Cell Specification during Female Gametophyte Development in Arabidopsis thaliana.
    Panoli A; Martin MV; Alandete-Saez M; Simon M; Neff C; Swarup R; Bellido A; Yuan L; Pagnussat GC; Sundaresan V
    PLoS One; 2015; 10(5):e0126164. PubMed ID: 25970627
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lateral Organ Boundaries Domain16 and 18 Act Downstream of the AUXIN1 and LIKE-AUXIN3 Auxin Influx Carriers to Control Lateral Root Development in Arabidopsis.
    Lee HW; Cho C; Kim J
    Plant Physiol; 2015 Aug; 168(4):1792-806. PubMed ID: 26059335
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computer simulation: the imaginary friend of auxin transport biology.
    Garnett P; Steinacher A; Stepney S; Clayton R; Leyser O
    Bioessays; 2010 Sep; 32(9):828-35. PubMed ID: 20652891
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Redox regulation of auxin signaling and plant development in Arabidopsis.
    Bashandy T; Meyer Y; Reichheld JP
    Plant Signal Behav; 2011 Jan; 6(1):117-9. PubMed ID: 21422826
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The heterozygous abp1/ABP1 insertional mutant has defects in functions requiring polar auxin transport and in regulation of early auxin-regulated genes.
    Effendi Y; Rietz S; Fischer U; Scherer GF
    Plant J; 2011 Jan; 65(2):282-94. PubMed ID: 21223392
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Over-expression of OsAGAP, an ARF-GAP, interferes with auxin influx, vesicle trafficking and root development.
    Zhuang X; Jiang J; Li J; Ma Q; Xu Y; Xue Y; Xu Z; Chong K
    Plant J; 2006 Nov; 48(4):581-91. PubMed ID: 17059407
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Auxin and its transport play a role in plant tolerance to arsenite-induced oxidative stress in Arabidopsis thaliana.
    Krishnamurthy A; Rathinasabapathi B
    Plant Cell Environ; 2013 Oct; 36(10):1838-49. PubMed ID: 23489261
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Auxin immunolocalization in plant tissues.
    Forestan C; Varotto S
    Methods Mol Biol; 2013; 959():223-33. PubMed ID: 23299679
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vascular cambium regeneration and vessel formation in wounded inflorescence stems of Arabidopsis.
    Mazur E; Benková E; Friml J
    Sci Rep; 2016 Sep; 6():33754. PubMed ID: 27649687
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRM1/BIG-mediated auxin action regulates Arabidopsis inflorescence development.
    Yamaguchi N; Suzuki M; Fukaki H; Morita-Terao M; Tasaka M; Komeda Y
    Plant Cell Physiol; 2007 Sep; 48(9):1275-90. PubMed ID: 17652113
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects.
    Ruegger M; Dewey E; Hobbie L; Brown D; Bernasconi P; Turner J; Muday G; Estelle M
    Plant Cell; 1997 May; 9(5):745-57. PubMed ID: 9165751
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Auxin transport: providing a sense of direction during plant development.
    Swarup R; Marchant A; Bennett MJ
    Biochem Soc Trans; 2000; 28(4):481-5. PubMed ID: 10961944
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiscale modelling of auxin transport in the plant-root elongation zone.
    Band LR; King JR
    J Math Biol; 2012 Oct; 65(4):743-85. PubMed ID: 22015980
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Shape of an Auxin Pulse, and What It Tells Us about the Transport Mechanism.
    Mitchison G
    PLoS Comput Biol; 2015 Oct; 11(10):e1004487. PubMed ID: 26484661
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of PIN auxin efflux carriers in polar auxin transport and accumulation and their effect on shaping maize development.
    Forestan C; Varotto S
    Mol Plant; 2012 Jul; 5(4):787-98. PubMed ID: 22186966
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Connective Auxin Transport in the Shoot Facilitates Communication between Shoot Apices.
    Bennett T; Hines G; van Rongen M; Waldie T; Sawchuk MG; Scarpella E; Ljung K; Leyser O
    PLoS Biol; 2016 Apr; 14(4):e1002446. PubMed ID: 27119525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SUPPRESSOR OF APICAL DOMINANCE1 of Sporisorium reilianum Modulates Inflorescence Branching Architecture in Maize and Arabidopsis.
    Ghareeb H; Drechsler F; Löfke C; Teichmann T; Schirawski J
    Plant Physiol; 2015 Dec; 169(4):2789-804. PubMed ID: 26511912
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.