These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 26531253)

  • 1. A highly reactive chalcogenide precursor for the synthesis of metal chalcogenide quantum dots.
    Jiang P; Zhu DL; Zhu CN; Zhang ZL; Zhang GJ; Pang DW
    Nanoscale; 2015 Dec; 7(45):19310-6. PubMed ID: 26531253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diorganyl dichalcogenides as useful synthons for colloidal semiconductor nanocrystals.
    Brutchey RL
    Acc Chem Res; 2015 Nov; 48(11):2918-26. PubMed ID: 26545235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphine-Free Synthesis of Metal Chalcogenide Quantum Dots by Directly Dissolving Chalcogen Dioxides in Alkylthiol as the Precursor.
    Yao D; Xin W; Liu Z; Wang Z; Feng J; Dong C; Liu Y; Yang B; Zhang H
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):9840-9848. PubMed ID: 28252286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prospects of Colloidal Copper Chalcogenide Nanocrystals.
    van der Stam W; Berends AC; de Mello Donega C
    Chemphyschem; 2016 Mar; 17(5):559-81. PubMed ID: 26684665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Luminescent quantum dots: Synthesis, optical properties, bioimaging and toxicity.
    Sobhanan J; Rival JV; Anas A; Sidharth Shibu E; Takano Y; Biju V
    Adv Drug Deliv Rev; 2023 Jun; 197():114830. PubMed ID: 37086917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A totally phosphine-free synthesis of metal telluride nanocrystals by employing alkylamides to replace alkylphosphines for preparing highly reactive tellurium precursors.
    Yao D; Liu Y; Zhao W; Wei H; Luo X; Wu Z; Dong C; Zhang H; Yang B
    Nanoscale; 2013 Oct; 5(20):9593-7. PubMed ID: 24056800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphine-free synthesis of Ag-In-Se alloy nanocrystals with visible emissions.
    Yao D; Liu H; Liu Y; Dong C; Zhang K; Sheng Y; Cui J; Zhang H; Yang B
    Nanoscale; 2015 Nov; 7(44):18570-8. PubMed ID: 26489872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The bis(p-sulfonatophenyl)phenylphosphine-assisted synthesis and phase transfer of ultrafine gold nanoclusters.
    Zhong J; Qu J; Ye F; Wang C; Meng L; Yang J
    J Colloid Interface Sci; 2011 Sep; 361(1):59-63. PubMed ID: 21641611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the synthesis of ternary lead chalcogenide quantum dots by balancing precursor reactivity.
    Smith DK; Luther JM; Semonin OE; Nozik AJ; Beard MC
    ACS Nano; 2011 Jan; 5(1):183-90. PubMed ID: 21141910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General synthetic approach to heterostructured nanocrystals based on noble metals and I-VI, II-VI, and I-III-VI metal chalcogenides.
    Liu M; Zeng HC
    Langmuir; 2014 Aug; 30(32):9838-49. PubMed ID: 25072624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A general strategy for synthesizing colloidal semiconductor zinc chalcogenide quantum rods.
    Jia G; Banin U
    J Am Chem Soc; 2014 Aug; 136(31):11121-7. PubMed ID: 25032504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum dots from a silylamide-promoted synthesis.
    Yarema M; Pichler S; Sytnyk M; Seyrkammer R; Lechner RT; Fritz-Popovski G; Jarzab D; Szendrei K; Resel R; Korovyanko O; Loi MA; Paris O; Hesser G; Heiss W
    ACS Nano; 2011 May; 5(5):3758-65. PubMed ID: 21500803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A synthetic method for transition-metal chalcogenide nanocrystals.
    Wang DS; Zheng W; Hao CH; Peng Q; Li YD
    Chemistry; 2009; 15(8):1870-5. PubMed ID: 19123218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solar light harvesting with multinary metal chalcogenide nanocrystals.
    Stroyuk O; Raevskaya A; Gaponik N
    Chem Soc Rev; 2018 Jul; 47(14):5354-5422. PubMed ID: 29799031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aqueous Topological Synthesis of Au@semiconductor Core-Shell Nanocrystals with Morphology and Composition Engineering.
    Li S; Xue J; Ji L; Li X; Zhang J
    Inorg Chem; 2024 Jun; 63(22):10358-10365. PubMed ID: 38767279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scalable noninjection phosphine-free synthesis and optical properties of tetragonal-phase CuInSe2 quantum dots.
    Liu F; Zhu J; Xu Y; Zhou L; Dai S
    Nanoscale; 2016 May; 8(19):10021-5. PubMed ID: 27137673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organic phase synthesis of noble metal-zinc chalcogenide core-shell nanostructures.
    Kumar P; Diab M; Flomin K; Rukenstein P; Mokari T
    J Colloid Interface Sci; 2016 Oct; 480():159-165. PubMed ID: 27428852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase transfer-based synthesis of HgS nanocrystals.
    Han L; Hou P; Feng Y; Liu H; Li J; Peng Z; Yang J
    Dalton Trans; 2014 Aug; 43(31):11981-7. PubMed ID: 24969780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alkylthiol-enabled Se powder dissolution in oleylamine at room temperature for the phosphine-free synthesis of copper-based quaternary selenide nanocrystals.
    Liu Y; Yao D; Shen L; Zhang H; Zhang X; Yang B
    J Am Chem Soc; 2012 May; 134(17):7207-10. PubMed ID: 22515639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphine-free engineering toward the synthesis of metal telluride nanocrystals: the role of a Te precursor coordinated at room temperature.
    Wu M; Wang Y; Wang H; Wang H; Sui Y; Du F; Yang X; Zou B
    Nanoscale; 2018 Nov; 10(46):21928-21935. PubMed ID: 30431639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.