These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 26531326)
21. Isomaltulose Exhibits Prebiotic Activity, and Modulates Gut Microbiota, the Production of Short Chain Fatty Acids, and Secondary Bile Acids in Rats. Yang ZD; Guo YS; Huang JS; Gao YF; Peng F; Xu RY; Su HH; Zhang PJ Molecules; 2021 Apr; 26(9):. PubMed ID: 33922589 [TBL] [Abstract][Full Text] [Related]
22. Sugarcane polyphenol and fiber to affect production of short-chain fatty acids and microbiota composition using in vitro digestion and pig faecal fermentation model. Loo YT; Howell K; Suleria H; Zhang P; Gu C; Ng K Food Chem; 2022 Aug; 385():132665. PubMed ID: 35299023 [TBL] [Abstract][Full Text] [Related]
23. The metabolic role of the gut microbiota in health and rheumatic disease: mechanisms and interventions. Abdollahi-Roodsaz S; Abramson SB; Scher JU Nat Rev Rheumatol; 2016 Aug; 12(8):446-55. PubMed ID: 27256713 [TBL] [Abstract][Full Text] [Related]
24. Gut microbiota in phytopharmacology: A comprehensive overview of concepts, reciprocal interactions, biotransformations and mode of actions. Dey P Pharmacol Res; 2019 Sep; 147():104367. PubMed ID: 31344423 [TBL] [Abstract][Full Text] [Related]
25. The human gut microbiota and its interactive connections to diet. Milani C; Ferrario C; Turroni F; Duranti S; Mangifesta M; van Sinderen D; Ventura M J Hum Nutr Diet; 2016 Oct; 29(5):539-46. PubMed ID: 27161433 [TBL] [Abstract][Full Text] [Related]
26. Short-chain fatty acids, secondary bile acids and indoles: gut microbial metabolites with effects on enteroendocrine cell function and their potential as therapies for metabolic disease. Masse KE; Lu VB Front Endocrinol (Lausanne); 2023; 14():1169624. PubMed ID: 37560311 [TBL] [Abstract][Full Text] [Related]
27. Dietary lipids, gut microbiota and lipid metabolism. Schoeler M; Caesar R Rev Endocr Metab Disord; 2019 Dec; 20(4):461-472. PubMed ID: 31707624 [TBL] [Abstract][Full Text] [Related]
28. Resveratrol suppresses microglial activation and promotes functional recovery of traumatic spinal cord via improving intestinal microbiota. He N; Shen G; Jin X; Li H; Wang J; Xu L; Chen J; Cao X; Fu C; Shi D; Song X; Liu S; Li Y; Zhao T; Li J; Zhong J; Shen Y; Zheng M; Chen YY; Wang LL Pharmacol Res; 2022 Sep; 183():106377. PubMed ID: 35926806 [TBL] [Abstract][Full Text] [Related]
29. Microbial metabolites in non-alcoholic fatty liver disease. Zhou D; Fan JG World J Gastroenterol; 2019 May; 25(17):2019-2028. PubMed ID: 31114130 [TBL] [Abstract][Full Text] [Related]
30. Gut-liver axis-mediated mechanism of liver cancer: A special focus on the role of gut microbiota. Ohtani N; Hara E Cancer Sci; 2021 Nov; 112(11):4433-4443. PubMed ID: 34533882 [TBL] [Abstract][Full Text] [Related]
31. The Gut Microbial Endocrine Organ in Type 2 Diabetes. Massey W; Brown JM Endocrinology; 2021 Feb; 162(2):. PubMed ID: 33373432 [TBL] [Abstract][Full Text] [Related]
32. Gut Microbiota in Hypertension and Atherosclerosis: A Review. Verhaar BJH; Prodan A; Nieuwdorp M; Muller M Nutrients; 2020 Sep; 12(10):. PubMed ID: 33003455 [TBL] [Abstract][Full Text] [Related]
33. Could the gut microbiota reconcile the oral bioavailability conundrum of traditional herbs? Chen F; Wen Q; Jiang J; Li HL; Tan YF; Li YH; Zeng NK J Ethnopharmacol; 2016 Feb; 179():253-64. PubMed ID: 26723469 [TBL] [Abstract][Full Text] [Related]
34. Antibiotic-induced gut microbiota depletion exacerbates host hypercholesterolemia. Kappel BA; De Angelis L; Puetz A; Ballanti M; Menghini R; Marx N; Federici M Pharmacol Res; 2023 Jan; 187():106570. PubMed ID: 36423788 [TBL] [Abstract][Full Text] [Related]
35. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Lavelle A; Sokol H Nat Rev Gastroenterol Hepatol; 2020 Apr; 17(4):223-237. PubMed ID: 32076145 [TBL] [Abstract][Full Text] [Related]
36. The gut microbiota as a novel regulator of cardiovascular function and disease. Battson ML; Lee DM; Weir TL; Gentile CL J Nutr Biochem; 2018 Jun; 56():1-15. PubMed ID: 29427903 [TBL] [Abstract][Full Text] [Related]
37. Low-Molecular-Weight Compounds Produced by the Intestinal Microbiota and Cardiovascular Disease. Cuervo L; McAlpine PL; Olano C; Fernández J; Lombó F Int J Mol Sci; 2024 Sep; 25(19):. PubMed ID: 39408727 [TBL] [Abstract][Full Text] [Related]
38. Resveratrol Attenuates Trimethylamine-N-Oxide (TMAO)-Induced Atherosclerosis by Regulating TMAO Synthesis and Bile Acid Metabolism via Remodeling of the Gut Microbiota. Chen ML; Yi L; Zhang Y; Zhou X; Ran L; Yang J; Zhu JD; Zhang QY; Mi MT mBio; 2016 Apr; 7(2):e02210-15. PubMed ID: 27048804 [TBL] [Abstract][Full Text] [Related]
39. Unaccounted risk of cardiovascular disease: the role of the microbiome in lipid metabolism. Joris BR; Gloor GB Curr Opin Lipidol; 2019 Apr; 30(2):125-133. PubMed ID: 30664014 [TBL] [Abstract][Full Text] [Related]
40. Targeting on Gut Microbial Metabolite Trimethylamine-N-Oxide and Short-Chain Fatty Acid to Prevent Maternal High-Fructose-Diet-Induced Developmental Programming of Hypertension in Adult Male Offspring. Hsu CN; Chang-Chien GP; Lin S; Hou CY; Tain YL Mol Nutr Food Res; 2019 Sep; 63(18):e1900073. PubMed ID: 31295767 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]