These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 26531710)

  • 1. Effects of NO3 (-) and PO4 (3-) on the release of geogenic arsenic and antimony in agricultural wetland soil: a field and laboratory approach.
    Rouwane A; Rabiet M; Grybos M; Bernard G; Guibaud G
    Environ Sci Pollut Res Int; 2016 Mar; 23(5):4714-28. PubMed ID: 26531710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimony in the soil-water-plant system at the Su Suergiu abandoned mine (Sardinia, Italy): strategies to mitigate contamination.
    Cidu R; Biddau R; Dore E; Vacca A; Marini L
    Sci Total Environ; 2014 Nov; 497-498():319-331. PubMed ID: 25137381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The translocation of antimony in soil-rice system with comparisons to arsenic: Alleviation of their accumulation in rice by simultaneous use of Fe(II) and NO
    Wang X; Li F; Yuan C; Li B; Liu T; Liu C; Du Y; Liu C
    Sci Total Environ; 2019 Feb; 650(Pt 1):633-641. PubMed ID: 30212692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soil organic matter affects arsenic and antimony sorption in anaerobic soils.
    Verbeeck M; Thiry Y; Smolders E
    Environ Pollut; 2020 Feb; 257():113566. PubMed ID: 31813702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speciation and bioavailability of selenium and antimony in non-flooded and wetland soils: a review.
    Nakamaru YM; Altansuvd J
    Chemosphere; 2014 Sep; 111():366-71. PubMed ID: 24997941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox effects on release kinetics of arsenic, cadmium, cobalt, and vanadium in Wax Lake Deltaic freshwater marsh soils.
    Shaheen SM; Rinklebe J; Frohne T; White JR; DeLaune RD
    Chemosphere; 2016 May; 150():740-748. PubMed ID: 26746419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Redox Transformation of Arsenic and Antimony in Soils Mediated by
    Zhang L; Lu JS
    Huan Jing Ke Xue; 2017 Sep; 38(9):3937-3943. PubMed ID: 29965277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Soil Phosphate on the Accumulation and Toxicity of Arsenic and Antimony in Choy Sum Cultivated in Individually and Co-contaminated Soils.
    Egodawatta LP; Holland A; Koppel D; Jolley DF
    Environ Toxicol Chem; 2020 May; 39(6):1233-1243. PubMed ID: 32143235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH-dependent release characteristics of antimony and arsenic from typical antimony-bearing ores.
    Hu X; Guo X; He M; Li S
    J Environ Sci (China); 2016 Jun; 44():171-179. PubMed ID: 27266313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimony retention and release from drained and waterlogged shooting range soil under field conditions.
    Hockmann K; Tandy S; Lenz M; Reiser R; Conesa HM; Keller M; Studer B; Schulin R
    Chemosphere; 2015 Sep; 134():536-43. PubMed ID: 25592464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of phosphate application on the mobility of antimony in firing range soils.
    Griggs CS; Martin WA; Larson SL; O'Connnor G; Fabian G; Zynda G; Mackie D
    Sci Total Environ; 2011 May; 409(12):2397-403. PubMed ID: 21440928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffusive Gradients in Thin Films Reveals Differences in Antimony and Arsenic Mobility in a Contaminated Wetland Sediment during an Oxic-Anoxic Transition.
    Arsic M; Teasdale PR; Welsh DT; Johnston SG; Burton ED; Hockmann K; Bennett WW
    Environ Sci Technol; 2018 Feb; 52(3):1118-1127. PubMed ID: 29303570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the Chemical Form of Antimony on Soil Microbial Community Structure and Arsenite Oxidation Activity.
    Kataoka T; Mitsunobu S; Hamamura N
    Microbes Environ; 2018 Jul; 33(2):214-221. PubMed ID: 29887548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antimony and arsenic exhibit contrasting spatial distributions in the sediment and vegetation of a contaminated wetland.
    Warnken J; Ohlsson R; Welsh DT; Teasdale PR; Chelsky A; Bennett WW
    Chemosphere; 2017 Aug; 180():388-395. PubMed ID: 28419952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of antimony behavior with that of arsenic under various soil redox conditions.
    Mitsunobu S; Harada T; Takahashi Y
    Environ Sci Technol; 2006 Dec; 40(23):7270-6. PubMed ID: 17180977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review.
    Wilson SC; Lockwood PV; Ashley PM; Tighe M
    Environ Pollut; 2010 May; 158(5):1169-81. PubMed ID: 19914753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of aqueous Fe(II) on Sb(V) sorption on soil and goethite.
    Fan JX; Wang YJ; Fan TT; Dang F; Zhou DM
    Chemosphere; 2016 Mar; 147():44-51. PubMed ID: 26761596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimony mobility in Japanese agricultural soils and the factors affecting antimony sorption behavior.
    Nakamaru Y; Tagami K; Uchida S
    Environ Pollut; 2006 May; 141(2):321-6. PubMed ID: 16246477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DGT and selective extractions reveal differences in arsenic and antimony uptake by the white icicle radish (Raphanus sativus).
    Ngo LK; Price HL; Bennett WW; Teasdale PR; Jolley DF
    Environ Pollut; 2020 Apr; 259():113815. PubMed ID: 31884210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimony and arsenic partitioning during Fe
    Karimian N; Johnston SG; Burton ED
    Chemosphere; 2018 Mar; 195():515-523. PubMed ID: 29277031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.