BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 26531728)

  • 1. Photoinduced spontaneous free-carrier generation in semiconducting single-walled carbon nanotubes.
    Park J; Reid OG; Blackburn JL; Rumbles G
    Nat Commun; 2015 Nov; 6():8809. PubMed ID: 26531728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct observation of deep excitonic states in the photoluminescence spectra of single-walled carbon nanotubes.
    Kiowski O; Arnold K; Lebedkin S; Hennrich F; Kappes MM
    Phys Rev Lett; 2007 Dec; 99(23):237402. PubMed ID: 18233410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitons in semiconducting carbon nanotubes: diameter-dependent photoluminescence spectra.
    Kanemitsu Y
    Phys Chem Chem Phys; 2011 Sep; 13(33):14879-88. PubMed ID: 21735026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optically Generated Free-Carrier Collection from an All Single-Walled Carbon Nanotube Active Layer.
    Kubie L; Watkins KJ; Ihly R; Wladkowski HV; Blackburn JL; Rice WD; Parkinson BA
    J Phys Chem Lett; 2018 Sep; 9(17):4841-4847. PubMed ID: 30085684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitons in Single-Walled Carbon Nanotubes and Their Dynamics.
    Amori AR; Hou Z; Krauss TD
    Annu Rev Phys Chem; 2018 Apr; 69():81-99. PubMed ID: 29401037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of Dielectric Environment on Trion Emission from Single-Walled Carbon Nanotube Networks.
    Wieland S; El Yumin AA; Gotthardt JM; Zaumseil J
    J Phys Chem C Nanomater Interfaces; 2023 Feb; 127(6):3112-3122. PubMed ID: 36824583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dielectric Screening inside Carbon Nanotubes.
    Gordeev G; Wasserroth S; Li H; Jorio A; Flavel BS; Reich S
    Nano Lett; 2024 Jul; 24(26):8030-8037. PubMed ID: 38912680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast terahertz probes of interacting dark excitons in chirality-specific semiconducting single-walled carbon nanotubes.
    Luo L; Chatzakis I; Patz A; Wang J
    Phys Rev Lett; 2015 Mar; 114(10):107402. PubMed ID: 25815965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron-electron interaction effects on the photophysics of metallic single-walled carbon nanotubes.
    Wang Z; Psiachos D; Badilla RF; Mazumdar S
    J Phys Condens Matter; 2009 Mar; 21(9):095009. PubMed ID: 21817382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comparison of Photocurrent Mechanisms in Quasi-Metallic and Semiconducting Carbon Nanotube pn-Junctions.
    Chang SW; Hazra J; Amer M; Kapadia R; Cronin SB
    ACS Nano; 2015 Dec; 9(12):11551-6. PubMed ID: 26498635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trion electroluminescence from semiconducting carbon nanotubes.
    Jakubka F; Grimm SB; Zakharko Y; Gannott F; Zaumseil J
    ACS Nano; 2014 Aug; 8(8):8477-86. PubMed ID: 25029479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the exciton binding energy in single-walled carbon nanotubes.
    Wang Z; Pedrosa H; Krauss T; Rothberg L
    Phys Rev Lett; 2006 Feb; 96(4):047403. PubMed ID: 16486895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photogenerated free carrier dynamics in metal and semiconductor single-walled carbon nanotube films.
    Beard MC; Blackburn JL; Heben MJ
    Nano Lett; 2008 Dec; 8(12):4238-42. PubMed ID: 19367928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon Nanotube Photoluminescence Modulation by Local Chemical and Supramolecular Chemical Functionalization.
    Shiraki T; Miyauchi Y; Matsuda K; Nakashima N
    Acc Chem Res; 2020 Sep; 53(9):1846-1859. PubMed ID: 32791829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron-electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes.
    Zhao H; Mazumdar S
    Phys Rev Lett; 2004 Oct; 93(15):157402. PubMed ID: 15524940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-Temperature Electroluminescence Excitation Mapping of Excitons and Trions in Short-Channel Monochiral Carbon Nanotube Devices.
    Gaulke M; Janissek A; Peyyety NA; Alamgir I; Riaz A; Dehm S; Li H; Lemmer U; Flavel BS; Kappes MM; Hennrich F; Wei L; Chen Y; Pyatkov F; Krupke R
    ACS Nano; 2020 Mar; 14(3):2709-2717. PubMed ID: 31920075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exciton binding energy in semiconducting single-walled carbon nanotubes.
    Ma YZ; Valkunas L; Bachilo SM; Fleming GR
    J Phys Chem B; 2005 Aug; 109(33):15671-4. PubMed ID: 16852986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bright, long-lived and coherent excitons in carbon nanotube quantum dots.
    Hofmann MS; Glückert JT; Noé J; Bourjau C; Dehmel R; Högele A
    Nat Nanotechnol; 2013 Jul; 8(7):502-5. PubMed ID: 23812185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast energy transfer of one-dimensional excitons between carbon nanotubes: a femtosecond time-resolved luminescence study.
    Koyama T; Miyata Y; Asaka K; Shinohara H; Saito Y; Nakamura A
    Phys Chem Chem Phys; 2012 Jan; 14(3):1070-84. PubMed ID: 22127395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.