These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 26531782)

  • 41. Identification of Early Heat and Water Stress in Strawberry Plants Using Chlorophyll-Fluorescence Indices Extracted via Hyperspectral Images.
    Poobalasubramanian M; Park ES; Faqeerzada MA; Kim T; Kim MS; Baek I; Cho BK
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433302
    [TBL] [Abstract][Full Text] [Related]  

  • 42. How does drought tolerance compare between two improved hybrids of balsam poplar and an unimproved native species?
    Larchevêque M; Maurel M; Desrochers A; Larocque GR
    Tree Physiol; 2011 Mar; 31(3):240-9. PubMed ID: 21444373
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Quantitative relationships between hyper-spectral vegetation indices and leaf area index of rice].
    Tian YC; Yang J; Yao X; Zhu Y; Cao WX
    Ying Yong Sheng Tai Xue Bao; 2009 Jul; 20(7):1685-90. PubMed ID: 19899471
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Co-transforming bar and CsLEA enhanced tolerance to drought and salt stress in transgenic alfalfa (Medicago sativa L.).
    Zhang J; Duan Z; Zhang D; Zhang J; Di H; Wu F; Wang Y
    Biochem Biophys Res Commun; 2016 Mar; 472(1):75-82. PubMed ID: 26906624
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Estimation of leaf area index by normalized composite vegetation index fusing the spectral feature of canopy water content].
    Cao S; Liu XN; Liu ML; Cao S; Yao S
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Feb; 31(2):478-82. PubMed ID: 21510408
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Plasticity of photoprotective mechanisms of Buxus sempervirens L. leaves in response to extreme temperatures.
    Hormaetxe K; Becerril JM; Hernández A; Esteban R; García-Plazaola JI
    Plant Biol (Stuttg); 2007 Jan; 9(1):59-68. PubMed ID: 17006796
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Water content estimation of conifer needles using leaf-level hyperspectral data.
    Zhang Y; Wang A; Li J; Wu J
    Front Plant Sci; 2024; 15():1428212. PubMed ID: 39309177
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spectral Reflectance Measurements.
    Stamford J; Kasznicki P; Lawson T
    Methods Mol Biol; 2024; 2790():333-353. PubMed ID: 38649579
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhancing Water-Deficient Potato Plant Identification: Assessing Realistic Performance of Attention-Based Deep Neural Networks and Hyperspectral Imaging for Agricultural Applications.
    Lapajne J; Vojnović A; Vončina A; Žibrat U
    Plants (Basel); 2024 Jul; 13(14):. PubMed ID: 39065444
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Monitoring spatio-temporal spectral characteristics of leaves of karst plant during dehydration using a field imaging spectrometer system].
    Liu B; Tong QX; Zhang LF; Zhang X; Yue YM; Zhang B
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Jun; 32(6):1460-5. PubMed ID: 22870619
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Measuring land surface temperature, near-infrared and short-wave infrared reflectance for estimation of water availability in vegetation.
    Holzman M; Rivas R; Bayala M; Pasapera J
    MethodsX; 2021; 8():101172. PubMed ID: 33354519
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tongue tumor detection in medical hyperspectral images.
    Liu Z; Wang H; Li Q
    Sensors (Basel); 2012; 12(1):162-74. PubMed ID: 22368462
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Diagnosing water content in paper by terahertz radiation.
    Banerjee D; von Spiegel W; Thomson MD; Schabel S; Roskos HG
    Opt Express; 2008 Jun; 16(12):9060-6. PubMed ID: 18545617
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Predicting key water stress indicators of Eucalyptus viminalis and Callitris rhomboidea using high-resolution visible to short-wave infrared spectroscopy.
    Haynes RS; Lucieer A; Brodribb TJ; Tonet V; Cimoli E
    Plant Cell Environ; 2024 Aug; ():. PubMed ID: 39119823
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress.
    Lowe A; Harrison N; French AP
    Plant Methods; 2017; 13():80. PubMed ID: 29051772
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Early drought stress detection in cereals: simplex volume maximisation for hyperspectral image analysis.
    R Mer C; Wahabzada M; Ballvora A; Pinto F; Rossini M; Panigada C; Behmann J; L On J; Thurau C; Bauckhage C; Kersting K; Rascher U; Pl Mer L
    Funct Plant Biol; 2012 Nov; 39(11):878-890. PubMed ID: 32480838
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hyperspectral confocal microscopy in the short-wave infrared range.
    Sung Y; Wang W
    Opt Lett; 2023 Aug; 48(15):3993-3996. PubMed ID: 37527101
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Water column compensation workflow for hyperspectral imaging data.
    Inamdar D; Rowan GSL; Kalacska M; Arroyo-Mora JP
    MethodsX; 2022; 9():101601. PubMed ID: 34984174
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Study on the reflected and hyperspectral mixed-pixel character of aquatic plants and water].
    Sun TL; Zhao YS; Liang RF; Zhang X
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Feb; 32(2):449-52. PubMed ID: 22512188
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-throughput phenotyping reveals multiple drought responses of wild and cultivated Phaseolinae beans.
    Verheyen J; Dhondt S; Abbeloos R; Eeckhout J; Janssens S; Leyns F; Scheldeman X; Storme V; Vandelook F
    Front Plant Sci; 2024; 15():1385985. PubMed ID: 39399541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.