These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
382 related articles for article (PubMed ID: 26534833)
1. Protein immobilization on the surface of polydimethylsiloxane and polymethyl methacrylate microfluidic devices. Khnouf R; Karasneh D; Albiss BA Electrophoresis; 2016 Feb; 37(3):529-35. PubMed ID: 26534833 [TBL] [Abstract][Full Text] [Related]
3. 3D nanomolding for lab-on-a-chip applications. Farshchian B; Park S; Choi J; Amirsadeghi A; Lee J; Park S Lab Chip; 2012 Nov; 12(22):4764-71. PubMed ID: 22990333 [TBL] [Abstract][Full Text] [Related]
4. Surface modification methods for enhanced device efficacy and function. Jones BJ; Hayes MA Methods Mol Biol; 2006; 339():49-56. PubMed ID: 16790866 [TBL] [Abstract][Full Text] [Related]
5. Mitigated reactive oxygen species generation leads to an improvement of cell proliferation on poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] functionalized polydimethylsiloxane surfaces. Yu L; Shi Z; Gao L; Li C J Biomed Mater Res A; 2015 Sep; 103(9):2987-97. PubMed ID: 25711883 [TBL] [Abstract][Full Text] [Related]
6. Surface modification for enhancing antibody binding on polymer-based microfluidic device for enzyme-linked immunosorbent assay. Bai Y; Koh CG; Boreman M; Juang YJ; Tang IC; Lee LJ; Yang ST Langmuir; 2006 Oct; 22(22):9458-67. PubMed ID: 17042569 [TBL] [Abstract][Full Text] [Related]
7. Chemical-assisted bonding of thermoplastics/elastomer for fabricating microfluidic valves. Gu P; Liu K; Chen H; Nishida T; Fan ZH Anal Chem; 2011 Jan; 83(1):446-52. PubMed ID: 21121689 [TBL] [Abstract][Full Text] [Related]
8. Air Plasma-Enhanced Covalent Functionalization of Poly(methyl methacrylate): High-Throughput Protein Immobilization for Miniaturized Bioassays. Sathish S; Ishizu N; Shen AQ ACS Appl Mater Interfaces; 2019 Dec; 11(49):46350-46360. PubMed ID: 31722179 [TBL] [Abstract][Full Text] [Related]
10. PDMS bonding to a bio-friendly photoresist via self-polymerized poly(dopamine) adhesive for complex protein micropatterning inside microfluidic channels. Kim M; Song KH; Doh J Colloids Surf B Biointerfaces; 2013 Dec; 112():134-8. PubMed ID: 23973671 [TBL] [Abstract][Full Text] [Related]
11. Deposition of PEG onto PMMA microchannel surface to minimize nonspecific adsorption. Bi H; Meng S; Li Y; Guo K; Chen Y; Kong J; Yang P; Zhong W; Liu B Lab Chip; 2006 Jun; 6(6):769-75. PubMed ID: 16738729 [TBL] [Abstract][Full Text] [Related]
12. Micro-macro hybrid soft-lithography master (MMHSM) fabrication for lab-on-a-chip applications. Park J; Li J; Han A Biomed Microdevices; 2010 Apr; 12(2):345-51. PubMed ID: 20049640 [TBL] [Abstract][Full Text] [Related]
13. Solution-phase surface modification in intact poly(dimethylsiloxane) microfluidic channels. Sui G; Wang J; Lee CC; Lu W; Lee SP; Leyton JV; Wu AM; Tseng HR Anal Chem; 2006 Aug; 78(15):5543-51. PubMed ID: 16878894 [TBL] [Abstract][Full Text] [Related]
15. Use of directly molded poly(methyl methacrylate) channels for microfluidic applications. Lee SH; Kang DH; Kim HN; Suh KY Lab Chip; 2010 Dec; 10(23):3300-6. PubMed ID: 20938498 [TBL] [Abstract][Full Text] [Related]
16. Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents. Brown L; Koerner T; Horton JH; Oleschuk RD Lab Chip; 2006 Jan; 6(1):66-73. PubMed ID: 16372071 [TBL] [Abstract][Full Text] [Related]
17. One-step in-mould modification of PDMS surfaces and its application in the fabrication of self-driven microfluidic channels. Fatona A; Chen Y; Reid M; Brook MA; Moran-Mirabal JM Lab Chip; 2015 Nov; 15(22):4322-30. PubMed ID: 26400365 [TBL] [Abstract][Full Text] [Related]