These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 26535051)

  • 1. Digital imaging of root traits (DIRT): a high-throughput computing and collaboration platform for field-based root phenomics.
    Das A; Schneider H; Burridge J; Ascanio AK; Wojciechowski T; Topp CN; Lynch JP; Weitz JS; Bucksch A
    Plant Methods; 2015; 11():51. PubMed ID: 26535051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DIRT/3D: 3D root phenotyping for field-grown maize (Zea mays).
    Liu S; Barrow CS; Hanlon M; Lynch JP; Bucksch A
    Plant Physiol; 2021 Oct; 187(2):739-757. PubMed ID: 34608967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image Harvest: an open-source platform for high-throughput plant image processing and analysis.
    Knecht AC; Campbell MT; Caprez A; Swanson DR; Walia H
    J Exp Bot; 2016 May; 67(11):3587-99. PubMed ID: 27141917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems.
    Iyer-Pascuzzi AS; Symonova O; Mileyko Y; Hao Y; Belcher H; Harer J; Weitz JS; Benfey PN
    Plant Physiol; 2010 Mar; 152(3):1148-57. PubMed ID: 20107024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TopoRoot+: computing whorl and soil line traits of field-excavated maize roots from CT imaging.
    Ju Y; Liu AE; Oestreich K; Wang T; Topp CN; Ju T
    Plant Methods; 2024 Aug; 20(1):132. PubMed ID: 39187896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer vision and machine learning enabled soybean root phenotyping pipeline.
    Falk KG; Jubery TZ; Mirnezami SV; Parmley KA; Sarkar S; Singh A; Ganapathysubramanian B; Singh AK
    Plant Methods; 2020; 16():5. PubMed ID: 31993072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leaf-GP: an open and automated software application for measuring growth phenotypes for arabidopsis and wheat.
    Zhou J; Applegate C; Alonso AD; Reynolds D; Orford S; Mackiewicz M; Griffiths S; Penfield S; Pullen N
    Plant Methods; 2017; 13():117. PubMed ID: 29299051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crop Phenomics and High-Throughput Phenotyping: Past Decades, Current Challenges, and Future Perspectives.
    Yang W; Feng H; Zhang X; Zhang J; Doonan JH; Batchelor WD; Xiong L; Yan J
    Mol Plant; 2020 Feb; 13(2):187-214. PubMed ID: 31981735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GiA Roots: software for the high throughput analysis of plant root system architecture.
    Galkovskyi T; Mileyko Y; Bucksch A; Moore B; Symonova O; Price CA; Topp CN; Iyer-Pascuzzi AS; Zurek PR; Fang S; Harer J; Benfey PN; Weitz JS
    BMC Plant Biol; 2012 Jul; 12():116. PubMed ID: 22834569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional phenomics and genetics of the root economics space in winter wheat using high-throughput phenotyping of respiration and architecture.
    Guo H; Ayalew H; Seethepalli A; Dhakal K; Griffiths M; Ma XF; York LM
    New Phytol; 2021 Oct; 232(1):98-112. PubMed ID: 33683730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Image-based high-throughput field phenotyping of crop roots.
    Bucksch A; Burridge J; York LM; Das A; Nord E; Weitz JS; Lynch JP
    Plant Physiol; 2014 Oct; 166(2):470-86. PubMed ID: 25187526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DIRT/ยต - Automated extraction of root hair traits using combinatorial optimization.
    Pietrzyk P; Phan-Udom N; Chutoe C; Pingault L; Roy A; Libault M; Johns Saengwilai P; Bucksch A
    J Exp Bot; 2024 Sep; ():. PubMed ID: 39269014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RSAtrace3D: robust vectorization software for measuring monocot root system architecture.
    Teramoto S; Tanabata T; Uga Y
    BMC Plant Biol; 2021 Aug; 21(1):398. PubMed ID: 34433428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput phenotyping for crop improvement in the genomics era.
    Mir RR; Reynolds M; Pinto F; Khan MA; Bhat MA
    Plant Sci; 2019 May; 282():60-72. PubMed ID: 31003612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The iPlant Collaborative: Cyberinfrastructure for Enabling Data to Discovery for the Life Sciences.
    Merchant N; Lyons E; Goff S; Vaughn M; Ware D; Micklos D; Antin P
    PLoS Biol; 2016 Jan; 14(1):e1002342. PubMed ID: 26752627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Root system architecture in cereals: progress, challenges and perspective.
    Maqbool S; Hassan MA; Xia X; York LM; Rasheed A; He Z
    Plant J; 2022 Apr; 110(1):23-42. PubMed ID: 35020968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenotypic variation of cassava root traits and their responses to drought.
    Kengkanna J; Jakaew P; Amawan S; Busener N; Bucksch A; Saengwilai P
    Appl Plant Sci; 2019 Apr; 7(4):e01238. PubMed ID: 31024782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PhytoOracle: Scalable, modular phenomics data processing pipelines.
    Gonzalez EM; Zarei A; Hendler N; Simmons T; Zarei A; Demieville J; Strand R; Rozzi B; Calleja S; Ellingson H; Cosi M; Davey S; Lavelle DO; Truco MJ; Swetnam TL; Merchant N; Michelmore RW; Lyons E; Pauli D
    Front Plant Sci; 2023; 14():1112973. PubMed ID: 36950362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.