These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26535449)

  • 1. A General Method for High-Performance Li-Ion Battery Electrodes from Colloidal Nanoparticles without the Introduction of Binders or Conductive-Carbon Additives: The Cases of MnS, Cu(2-x)S, and Ge.
    Ha DH; Ly T; Caron JM; Zhang H; Fritz KE; Robinson RD
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25053-60. PubMed ID: 26535449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binder-free and carbon-free nanoparticle batteries: a method for nanoparticle electrodes without polymeric binders or carbon black.
    Ha DH; Islam MA; Robinson RD
    Nano Lett; 2012 Oct; 12(10):5122-30. PubMed ID: 22963404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rapid, solvent-free protocol for the synthesis of germanium nanowire lithium-ion anodes with a long cycle life and high rate capability.
    Mullane E; Kennedy T; Geaney H; Ryan KM
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18800-7. PubMed ID: 25333500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Li2S Nanocrystals Confined in Free-Standing Carbon Paper for High Performance Lithium-Sulfur Batteries.
    Wu M; Cui Y; Fu Y
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21479-86. PubMed ID: 26349017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible MnS-Carbon Fiber Hybrids for Lithium-Ion and Sodium-Ion Energy Storage.
    Gao S; Chen G; Dall'Agnese Y; Wei Y; Gao Z; Gao Y
    Chemistry; 2018 Sep; 24(51):13535-13539. PubMed ID: 29904945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly conductive Cu2-xS nanoparticle films through room-temperature processing and an order of magnitude enhancement of conductivity via electrophoretic deposition.
    Otelaja OO; Ha DH; Ly T; Zhang H; Robinson RD
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18911-20. PubMed ID: 25314692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries.
    Zheng S; Chen Y; Xu Y; Yi F; Zhu Y; Liu Y; Yang J; Wang C
    ACS Nano; 2013 Dec; 7(12):10995-1003. PubMed ID: 24251957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Template-free preparation of crystalline Ge nanowire film electrodes via an electrochemical liquid-liquid-solid process in water at ambient pressure and temperature for energy storage.
    Gu J; Collins SM; Carim AI; Hao X; Bartlett BM; Maldonado S
    Nano Lett; 2012 Sep; 12(9):4617-23. PubMed ID: 22900746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of one-dimensional copper sulfide nanorods as high-performance anode in lithium ion batteries.
    Li X; He X; Shi C; Liu B; Zhang Y; Wu S; Zhu Z; Zhao J
    ChemSusChem; 2014 Dec; 7(12):3328-33. PubMed ID: 25354020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered Si sandwich electrode: Si nanoparticles/graphite sheet hybrid on ni foam for next-generation high-performance lithium-ion batteries.
    Gao C; Zhao H; Lv P; Zhang T; Xia Q; Wang J
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1693-8. PubMed ID: 25561398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth of linked silicon/carbon nanospheres on copper substrate as integrated electrodes for Li-ion batteries.
    Zhang Z; Wang Y; Tan Q; Li D; Chen Y; Zhong Z; Su F
    Nanoscale; 2014 Jan; 6(1):371-7. PubMed ID: 24201898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Additive-free hollow-structured Co3O4 nanoparticle Li-ion battery: the origins of irreversible capacity loss.
    Kim Y; Lee JH; Cho S; Kwon Y; In I; Lee J; You NH; Reichmanis E; Ko H; Lee KT; Kwon HK; Ko DH; Yang H; Park B
    ACS Nano; 2014 Jul; 8(7):6701-12. PubMed ID: 24895838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binder-free Si nanoparticle electrode with 3D porous structure prepared by electrophoretic deposition for lithium-ion batteries.
    Yang Y; Chen D; Liu B; Zhao J
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7497-504. PubMed ID: 25816108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophoretic Deposition of Aged and Charge Controlled Colloidal Copper Sulfide Nanoparticles.
    Park Y; Kang H; Jeong W; Son H; Ha DH
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33429956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible copper-stabilized sulfur-carbon nanofibers with excellent electrochemical performance for Li-S batteries.
    Zeng L; Jiang Y; Xu J; Wang M; Li W; Yu Y
    Nanoscale; 2015 Jul; 7(25):10940-9. PubMed ID: 26059471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alkanethiol-passivated ge nanowires as high-performance anode materials for lithium-ion batteries: the role of chemical surface functionalization.
    Yuan FW; Yang HJ; Tuan HY
    ACS Nano; 2012 Nov; 6(11):9932-42. PubMed ID: 23043347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capacity retention behavior and morphology evolution of SixGe1-x nanoparticles as lithium-ion battery anode.
    Ge M; Kim S; Nie A; Shahbazian-Yassar R; Mecklenburg M; Lu Y; Fang X; Shen C; Rong J; Yi Park S; Suk Kim D; Young Kim J; Zhou C
    Nanotechnology; 2015 Jan; 26(25):255702. PubMed ID: 26023725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrathin Hexagonal 2D Co₂GeO₄ Nanosheets: Excellent Li-Storage Performance and ex Situ Investigation of Electrochemical Mechanism.
    Jin S; Yang G; Song H; Cui H; Wang C
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24932-43. PubMed ID: 26486013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks.
    Xue DJ; Xin S; Yan Y; Jiang KC; Yin YX; Guo YG; Wan LJ
    J Am Chem Soc; 2012 Feb; 134(5):2512-5. PubMed ID: 22260540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional Si Anodes with Fast Diffusion, High Capacity, High Rate Capability, and Long Cycle Life.
    Chiluwal S; Sapkota N; Rao AM; Podila R
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):34763-34770. PubMed ID: 32639139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.