BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

948 related articles for article (PubMed ID: 26535786)

  • 21. Layered Heterostructure Ionogel Electrolytes for High-Performance Solid-State Lithium-Ion Batteries.
    Hyun WJ; Thomas CM; Luu NS; Hersam MC
    Adv Mater; 2021 Apr; 33(13):e2007864. PubMed ID: 33594680
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ceramic-Based Composite Solid Electrolyte for Lithium-Ion Batteries.
    Lim YJ; Kim HW; Lee SS; Kim HJ; Kim JK; Jung YG; Kim Y
    Chempluschem; 2015 Jul; 80(7):1100-1103. PubMed ID: 31973285
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Composite Electrolyte for All-Solid-State Lithium Batteries: Low-Temperature Fabrication and Conductivity Enhancement.
    Lee SD; Jung KN; Kim H; Shin HS; Song SW; Park MS; Lee JW
    ChemSusChem; 2017 May; 10(10):2175-2181. PubMed ID: 28317277
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Excellent Deformable Oxide Glass Electrolytes and Oxide-Type All-Solid-State Li
    Nagata H; Akimoto J
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):35785-35794. PubMed ID: 34288643
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High Voltage LiNi
    Cao X; He X; Wang J; Liu H; Röser S; Rad BR; Evertz M; Streipert B; Li J; Wagner R; Winter M; Cekic-Laskovic I
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):25971-25978. PubMed ID: 27618412
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Single-Ion Conducting Borate Network Polymer as a Viable Quasi-Solid Electrolyte for Lithium Metal Batteries.
    Shin DM; Bachman JE; Taylor MK; Kamcev J; Park JG; Ziebel ME; Velasquez E; Jarenwattananon NN; Sethi GK; Cui Y; Long JR
    Adv Mater; 2020 Mar; 32(10):e1905771. PubMed ID: 31985110
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of Ionic Liquid Based Electrolytes, Assembly of Li-ion Batteries, and Measurements of Performance at High Temperature.
    Lin X; Chapman Varela J; Grinstaff MW
    J Vis Exp; 2016 Dec; (118):. PubMed ID: 28060272
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Organic-Organic Composite Electrolyte Enables Ultralong Cycle Life in Solid-State Lithium Metal Batteries.
    Xue C; Zhang X; Wang S; Li L; Nan CW
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):24837-24844. PubMed ID: 32383853
    [TBL] [Abstract][Full Text] [Related]  

  • 29. All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode.
    Zhu Z; Hong M; Guo D; Shi J; Tao Z; Chen J
    J Am Chem Soc; 2014 Nov; 136(47):16461-4. PubMed ID: 25383544
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydroxyapatite Nanowire-Reinforced Poly(ethylene oxide)-Based Polymer Solid Electrolyte for Application in High-Temperature Lithium Batteries.
    Wen J; Zhang R; Zhao Q; Liu W; Lu G; Hu X; Sun J; Wang R; Jiang X; Hu N; Liu J; Liu X; Xu C
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):54637-54643. PubMed ID: 33226206
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent Advances in Porous Polymers for Solid-State Rechargeable Lithium Batteries.
    Zou J; Ben T
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36432931
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Earth-Abundant Kaolinite Nanoplatelet Gel Electrolytes for Solid-State Lithium Metal Batteries.
    Thomas CM; Zeng D; Huang HC; Pham T; Torres-Castanedo CG; Bedzyk MJ; Dravid VP; Hersam MC
    ACS Appl Mater Interfaces; 2024 Jun; ():. PubMed ID: 38924489
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-Performance All-Solid-State Polymer Electrolyte with Controllable Conductivity Pathway Formed by Self-Assembly of Reactive Discogen and Immobilized via a Facile Photopolymerization for a Lithium-Ion Battery.
    Wang S; Liu X; Wang A; Wang Z; Chen J; Zeng Q; Jiang X; Zhou H; Zhang L
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25273-25284. PubMed ID: 29975039
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of Fluorine Doping on Structural and Electrochemical Properties of Li
    Lu Y; Meng X; Alonso JA; Fernández-Díaz MT; Sun C
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2042-2049. PubMed ID: 30562455
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phase-Inversion Polymer Composite Separators Based on Hexagonal Boron Nitride Nanosheets for High-Temperature Lithium-Ion Batteries.
    de Moraes ACM; Hyun WJ; Luu NS; Lim JM; Park KY; Hersam MC
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8107-8114. PubMed ID: 31973532
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hybrid Lithium-Sulfur Batteries with a Solid Electrolyte Membrane and Lithium Polysulfide Catholyte.
    Yu X; Bi Z; Zhao F; Manthiram A
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16625-31. PubMed ID: 26161547
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ionic-liquid-nanoparticle hybrid electrolytes: applications in lithium metal batteries.
    Lu Y; Korf K; Kambe Y; Tu Z; Archer LA
    Angew Chem Int Ed Engl; 2014 Jan; 53(2):488-92. PubMed ID: 24282090
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lithium-Ion Battery Separators for Ionic-Liquid Electrolytes: A Review.
    Francis CFJ; Kyratzis IL; Best AS
    Adv Mater; 2020 May; 32(18):e1904205. PubMed ID: 31957144
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hybrid Ionogel Electrolytes for Advanced Lithium Secondary Batteries: Developments and Challenges.
    Hu Y; Yu L; Meng T; Zhou S; Sui X; Hu X
    Chem Asian J; 2022 Dec; 17(23):e202200794. PubMed ID: 36177983
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-Performance Room Temperature Lithium-Ion Battery Solid Polymer Electrolytes Based on Poly(vinylidene fluoride-
    Barbosa JC; Correia DM; Fernández EM; Fidalgo-Marijuan A; Barandika G; Gonçalves R; Ferdov S; de Zea Bermudez V; Costa CM; Lanceros-Mendez S
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):48889-48900. PubMed ID: 34636238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 48.