BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 26536234)

  • 41. Self-Assembled α-Fe2O3 mesocrystals/graphene nanohybrid for enhanced electrochemical capacitors.
    Yang S; Song X; Zhang P; Sun J; Gao L
    Small; 2014 Jun; 10(11):2270-9. PubMed ID: 24577801
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inner Surface-Functionalized Graphene Aerogel Microgranules with Static Microwave Attenuation and Dynamic Infrared Shielding.
    Wu X; Lyu J; Hong G; Liu XC; Zhang X
    Langmuir; 2018 Jul; 34(30):9004-9014. PubMed ID: 29958495
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis of nitrogen-doped activated graphene aerogel/gold nanoparticles and its application for electrochemical detection of hydroquinone and o-dihydroxybenzene.
    Juanjuan Z; Ruiyi L; Zaijun L; Junkang L; Zhiguo G; Guangli W
    Nanoscale; 2014 May; 6(10):5458-66. PubMed ID: 24722983
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Graphene aerogel/epoxy composites with exceptional anisotropic structure and properties.
    Wang Z; Shen X; Akbari Garakani M; Lin X; Wu Y; Liu X; Sun X; Kim JK
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5538-49. PubMed ID: 25691257
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Versatile Aerogels for Sensors.
    Yang J; Li Y; Zheng Y; Xu Y; Zheng Z; Chen X; Liu W
    Small; 2019 Oct; 15(41):e1902826. PubMed ID: 31475442
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors.
    Zheng Q; Cai Z; Ma Z; Gong S
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3263-71. PubMed ID: 25625769
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthesis of Ni-Doped Graphene Aerogels for Electrochemical Applications.
    González-Barriuso M; Sánchez-Suárez M; González-Lavín J; Arenillas A; Rey-Raap N
    Gels; 2024 Mar; 10(3):. PubMed ID: 38534598
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hierarchical Doped Gelatin-Derived Carbon Aerogels: Three Levels of Porosity for Advanced Supercapacitors.
    Kandasamy A; Ramasamy T; Samrin A; Narayanasamy P; Mohan R; Bazaka O; Levchenko I; Bazaka K; Mohandas M
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32560290
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Aerogels in Chemical Engineering: Strategies Toward Tailor-Made Aerogels.
    Smirnova I; Gurikov P
    Annu Rev Chem Biomol Eng; 2017 Jun; 8():307-334. PubMed ID: 28375771
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biomimetic Architectured Graphene Aerogel with Exceptional Strength and Resilience.
    Yang M; Zhao N; Cui Y; Gao W; Zhao Q; Gao C; Bai H; Xie T
    ACS Nano; 2017 Jul; 11(7):6817-6824. PubMed ID: 28636356
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An overview of the applications of graphene-based materials in supercapacitors.
    Huang Y; Liang J; Chen Y
    Small; 2012 Jun; 8(12):1805-34. PubMed ID: 22514114
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recent advances in graphene-based hybrid nanostructures for electrochemical energy storage.
    Xiong P; Zhu J; Zhang L; Wang X
    Nanoscale Horiz; 2016 Sep; 1(5):340-374. PubMed ID: 32260626
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Three-dimensional graphene-based composites for energy applications.
    Mao S; Lu G; Chen J
    Nanoscale; 2015 Apr; 7(16):6924-43. PubMed ID: 25585233
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Graphene and graphene-based materials for energy storage applications.
    Zhu J; Yang D; Yin Z; Yan Q; Zhang H
    Small; 2014 Sep; 10(17):3480-98. PubMed ID: 24431122
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Manganese oxide/graphene aerogel composites as an outstanding supercapacitor electrode material.
    Wang CC; Chen HC; Lu SY
    Chemistry; 2014 Jan; 20(2):517-23. PubMed ID: 24327570
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In situ self-sacrificed template synthesis of vanadium nitride/nitrogen-doped graphene nanocomposites for electrochemical capacitors.
    Liu HH; Zhang HL; Xu HB; Lou TP; Sui ZT; Zhang Y
    Nanoscale; 2018 Mar; 10(11):5246-5253. PubMed ID: 29498387
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Graphene Aerogel Growth on Functionalized Carbon Fibers.
    Vrettos K; Spyrou K; Georgakilas V
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32178398
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Superelastic Multifunctional Aminosilane-Crosslinked Graphene Aerogels for High Thermal Insulation, Three-Component Separation, and Strain/Pressure-Sensing Arrays.
    Zu G; Kanamori K; Nakanishi K; Lu X; Yu K; Huang J; Sugimura H
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43533-43542. PubMed ID: 31674184
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators.
    Kobayashi Y; Saito T; Isogai A
    Angew Chem Int Ed Engl; 2014 Sep; 53(39):10394-7. PubMed ID: 24985785
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Control of the microstructure and surface chemistry of graphene aerogels via pH and time manipulation by a hydrothermal method.
    García-Bordejé E; Víctor-Román S; Sanahuja-Parejo O; Benito AM; Maser WK
    Nanoscale; 2018 Feb; 10(7):3526-3539. PubMed ID: 29410999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.