BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 26536256)

  • 1. Predictive Spatiotemporal Manipulation of Signaling Perturbations Using Optogenetics.
    Valon L; Etoc F; Remorino A; di Pietro F; Morin X; Dahan M; Coppey M
    Biophys J; 2015 Nov; 109(9):1785-97. PubMed ID: 26536256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of Cdc42 GTPase upon CRY2-Induced Cortical Recruitment Is Antagonized by GAPs in Fission Yeast.
    Lamas I; Weber N; Martin SG
    Cells; 2020 Sep; 9(9):. PubMed ID: 32932721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetic control of cellular forces and mechanotransduction.
    Valon L; Marín-Llauradó A; Wyatt T; Charras G; Trepat X
    Nat Commun; 2017 Feb; 8():14396. PubMed ID: 28186127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of Cell Migration Using Optogenetics.
    Valon L; de Beco S
    Methods Mol Biol; 2021; 2179():415-425. PubMed ID: 32939735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein Inactivation by Optogenetic Trapping in Living Cells.
    Park H; Lee S; Heo WD
    Methods Mol Biol; 2016; 1408():363-76. PubMed ID: 26965136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal control of fibroblast growth factor receptor signals by blue light.
    Kim N; Kim JM; Lee M; Kim CY; Chang KY; Heo WD
    Chem Biol; 2014 Jul; 21(7):903-12. PubMed ID: 24981772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of endogenous transmembrane receptors through optogenetic Cry2 clustering.
    Bugaj LJ; Spelke DP; Mesuda CK; Varedi M; Kane RS; Schaffer DV
    Nat Commun; 2015 Apr; 6():6898. PubMed ID: 25902152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optogenetic protein clustering through fluorescent protein tagging and extension of CRY2.
    Park H; Kim NY; Lee S; Kim N; Kim J; Heo WD
    Nat Commun; 2017 Jun; 8(1):30. PubMed ID: 28646204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in optogenetic regulation of gene expression in mammalian cells using cryptochrome 2 (CRY2).
    Hernández-Candia CN; Wysoczynski CL; Tucker CL
    Methods; 2019 Jul; 164-165():81-90. PubMed ID: 30905749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Dual Characteristics of Light-Induced Cryptochrome 2, Homo-oligomerization and Heterodimerization, for Optogenetic Manipulation in Mammalian Cells.
    Che DL; Duan L; Zhang K; Cui B
    ACS Synth Biol; 2015 Oct; 4(10):1124-35. PubMed ID: 25985220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OpEn-Tag-A Customizable Optogenetic Toolbox To Dissect Subcellular Signaling.
    Mühlhäuser WWD; Weber W; Radziwill G
    ACS Synth Biol; 2019 Jul; 8(7):1679-1684. PubMed ID: 31185174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-Regulated Protein Kinases Based on the CRY2-CIB1 System.
    Mühlhäuser WW; Hörner M; Weber W; Radziwill G
    Methods Mol Biol; 2017; 1596():257-270. PubMed ID: 28293892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible optogenetic control of kinase activity during differentiation and embryonic development.
    Krishnamurthy VV; Khamo JS; Mei W; Turgeon AJ; Ashraf HM; Mondal P; Patel DB; Risner N; Cho EE; Yang J; Zhang K
    Development; 2016 Nov; 143(21):4085-4094. PubMed ID: 27697903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optogenetic protein clustering and signaling activation in mammalian cells.
    Bugaj LJ; Choksi AT; Mesuda CK; Kane RS; Schaffer DV
    Nat Methods; 2013 Mar; 10(3):249-52. PubMed ID: 23377377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells.
    Kroschewski R; Hall A; Mellman I
    Nat Cell Biol; 1999 May; 1(1):8-13. PubMed ID: 10559857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlating in Vitro and in Vivo Activities of Light-Inducible Dimers: A Cellular Optogenetics Guide.
    Hallett RA; Zimmerman SP; Yumerefendi H; Bear JE; Kuhlman B
    ACS Synth Biol; 2016 Jan; 5(1):53-64. PubMed ID: 26474029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical control of biological processes by light-switchable proteins.
    Fan LZ; Lin MZ
    Wiley Interdiscip Rev Dev Biol; 2015; 4(5):545-54. PubMed ID: 25858669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optogenetic Control of Fibroblast Growth Factor Receptor Signaling.
    Kim N; Kim JM; Heo WD
    Methods Mol Biol; 2016; 1408():345-62. PubMed ID: 26965135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shaping an evanescent focus of light for high spatial resolution optogenetic activations in live cells.
    Grosjean M; Grichine A; Pezet M; Destaing O; Delon A; Wang I
    Opt Express; 2024 May; 32(11):19480-19494. PubMed ID: 38859082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane Dynamics Induced by a Phosphatidylinositol 3,4,5-Trisphosphate Optogenetic Tool.
    Ueda Y; Ii T; Aono Y; Sugimoto N; Shinji S; Yoshida H; Sato M
    Anal Sci; 2019 Jan; 35(1):57-63. PubMed ID: 30393242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.