These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 26536395)

  • 1. Experimental Investigation and Thermodynamic Assessment of Phase Equilibria in the PLLA/Dioxane/Water Ternary System for Applications in the Biomedical Field.
    Ruggiero F; Netti PA; Torino E
    Langmuir; 2015 Dec; 31(47):13003-10. PubMed ID: 26536395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of some factors on fabrication of poly(L-lactic acid) microporous foams by thermally induced phase separation using N,N-dimethylacetamide as solvent.
    Li S; Chen X; Li M
    Prep Biochem Biotechnol; 2011; 41(1):53-72. PubMed ID: 21229464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macroporous poly(L-lactide) scaffold 1. Preparation of a macroporous scaffold by liquid--liquid phase separation of a PLLA--dioxane--water system.
    Hua FJ; Kim GE; Lee JD; Son YK; Lee DS
    J Biomed Mater Res; 2002; 63(2):161-7. PubMed ID: 11870649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymeric scaffolds prepared via thermally induced phase separation: tuning of structure and morphology.
    Pavia FC; La Carrubba V; Piccarolo S; Brucato V
    J Biomed Mater Res A; 2008 Aug; 86(2):459-66. PubMed ID: 17975822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering.
    Wei G; Ma PX
    Biomaterials; 2004 Aug; 25(19):4749-57. PubMed ID: 15120521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bionic electrospun ultrafine fibrous poly(L-lactic acid) scaffolds with a multi-scale structure.
    Zhang K; Wang X; Jing D; Yang Y; Zhu M
    Biomed Mater; 2009 Jun; 4(3):035004. PubMed ID: 19439825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermally produced biodegradable scaffolds for cartilage tissue engineering.
    Lee SH; Kim BS; Kim SH; Kang SW; Kim YH
    Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and in vitro characterization of scaffolds of poly(L-lactic acid) containing bioactive glass ceramic nanoparticles.
    Hong Z; Reis RL; Mano JF
    Acta Biomater; 2008 Sep; 4(5):1297-306. PubMed ID: 18439885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors.
    Lv Q; Nair L; Laurencin CT
    J Biomed Mater Res A; 2009 Dec; 91(3):679-91. PubMed ID: 19030184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gas anti-solvent precipitation assisted salt leaching for generation of micro- and nano-porous wall in bio-polymeric 3D scaffolds.
    Flaibani M; Elvassore N
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1632-9. PubMed ID: 24364970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of polycaprolactone nanofibrous scaffolds by facile phase separation approach.
    Liu S; He Z; Xu G; Xiao X
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():201-8. PubMed ID: 25280697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of microstructure, mechanical properties and cellular viability of poly(L-lactic acid) tissue engineering scaffolds prepared by different thermally induced phase separation protocols.
    Molladavoodi S; Gorbet M; Medley J; Kwon HJ
    J Mech Behav Biomed Mater; 2013 Jan; 17():186-97. PubMed ID: 23122716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binary system thermodynamics to control pore architecture of PCL scaffold via temperature-driven phase separation process.
    Guarino V; Guaccio A; Guarnieri D; Netti PA; Ambrosio L
    J Biomater Appl; 2012 Sep; 27(3):241-54. PubMed ID: 21527493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Miscibility and hydrolytic behavior of poly(trimethylene carbonate) and poly(L-lactide) and their blends in monolayers at the air/water interface.
    Moon HK; Choi YS; Lee JK; Ha CS; Lee WK; Gardella JA
    Langmuir; 2009 Apr; 25(8):4478-83. PubMed ID: 19245220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering.
    Lou T; Wang X; Song G; Gu Z; Yang Z
    Int J Biol Macromol; 2014 Aug; 69():464-70. PubMed ID: 24933519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable HA-PLA 3-D porous scaffolds: effect of nano-sized filler content on scaffold properties.
    Kothapalli CR; Shaw MT; Wei M
    Acta Biomater; 2005 Nov; 1(6):653-62. PubMed ID: 16701846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TES buffer-induced phase separation of aqueous solutions of several water-miscible organic solvents at 298.15 K: phase diagrams and molecular dynamic simulations.
    Taha M; Lee MJ
    J Chem Phys; 2013 Jun; 138(24):244501. PubMed ID: 23822250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method for solvent-free fabrication of porous polymer using solid-state foaming and ultrasound for tissue engineering applications.
    Wang X; Li W; Kumar V
    Biomaterials; 2006 Mar; 27(9):1924-9. PubMed ID: 16219346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of nano-fibrous PLLA scaffold reinforced with chitosan fibers.
    Wang X; Song G; Lou T; Peng W
    J Biomater Sci Polym Ed; 2009; 20(14):1995-2002. PubMed ID: 19874673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymer scaffolds with no skin-effect for tissue engineering applications fabricated by thermally induced phase separation.
    Kasoju N; Kubies D; Sedlačík T; Janoušková O; Koubková J; Kumorek MM; Rypáček F
    Biomed Mater; 2016 Jan; 11(1):015002. PubMed ID: 26752658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.