These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
75 related articles for article (PubMed ID: 26536793)
1. Acute and subchronic toxicity of metal complex azo acid dye and anionic surfactant oil on fish Oreochromis niloticus. Amwele HR; Papirom P; Chukanhom K; Beamish FH; Petkam R J Environ Biol; 2015 Jan; 36(1):199-205. PubMed ID: 26536793 [TBL] [Abstract][Full Text] [Related]
2. Ultra-morphology of the scale as an indicator of the stress of Acid Black-1 (AB-1, CI: 20470) and zinc (Zn). Kaur R; Kaur A; Kaur K Environ Sci Pollut Res Int; 2019 Jun; 26(17):17121-17134. PubMed ID: 31001774 [TBL] [Abstract][Full Text] [Related]
3. Changes in serum biochemical parameters of freshwater fish Oreochromis niloticus following prolonged metal (Ag, Cd, Cr, Cu, Zn) exposures. Oner M; Atli G; Canli M Environ Toxicol Chem; 2008 Feb; 27(2):360-6. PubMed ID: 18348636 [TBL] [Abstract][Full Text] [Related]
4. Response of antioxidant system of freshwater fish Oreochromis niloticus to acute and chronic metal (Cd, Cu, Cr, Zn, Fe) exposures. Atli G; Canli M Ecotoxicol Environ Saf; 2010 Nov; 73(8):1884-9. PubMed ID: 20870289 [TBL] [Abstract][Full Text] [Related]
5. Effects of metal (Ag, Cd, Cr, Cu, Zn) exposures on some enzymatic and non-enzymatic indicators in the liver of Oreochromis niloticus. Oner M; Atli G; Canli M Bull Environ Contam Toxicol; 2009 Mar; 82(3):317-21. PubMed ID: 18953474 [TBL] [Abstract][Full Text] [Related]
6. Sublethal concentrations of di-n-butyl phthalate promote biochemical changes and DNA damage in juvenile Nile tilapia (Oreochromis niloticus). Khalil SR; Abd Elhakim Y; El-Murr AE Jpn J Vet Res; 2016 Feb; 64(1):67-80. PubMed ID: 27348890 [TBL] [Abstract][Full Text] [Related]
7. Low water conductivity increases the effects of copper on the serum parameters in fish (Oreochromis niloticus). Canli EG; Canli M Environ Toxicol Pharmacol; 2015 Mar; 39(2):606-13. PubMed ID: 25682007 [TBL] [Abstract][Full Text] [Related]
8. Fish erythrocytes as biomarkers for the toxicity of sublethal doses of an azo dye, Basic Violet-1 (CI: 42535). Kaur K; Kaur A Microsc Microanal; 2015 Feb; 21(1):264-73. PubMed ID: 25434363 [TBL] [Abstract][Full Text] [Related]
9. Response of antioxidant system of tilapia (Oreochromis niloticus) following exposure to chromium and copper in differing hardness. Dogan Z; Eroglu A; Kanak EG; Atli G; Canli M Bull Environ Contam Toxicol; 2014 Jun; 92(6):680-6. PubMed ID: 24610354 [TBL] [Abstract][Full Text] [Related]
10. Spectrophotometric study of anionic azo-dye light yellow (X6G) interaction with surfactants and its micellar solubilization in cationic surfactant micelles. Hosseinzadeh R; Maleki R; Matin AA; Nikkhahi Y Spectrochim Acta A Mol Biomol Spectrosc; 2008 Apr; 69(4):1183-7. PubMed ID: 17703992 [TBL] [Abstract][Full Text] [Related]
11. Histopathological alterations of Nile tilapia, Oreochromis niloticus in acute and subchronic alachlor exposure. Peebua P; Kruatrachue M; Pokethitiyook P; Singhakaew S J Environ Biol; 2008 May; 29(3):325-31. PubMed ID: 18972686 [TBL] [Abstract][Full Text] [Related]
12. Surfactant-facilitated remediation of metal-contaminated soils: efficacy and toxicological consequences to earthworms. Slizovskiy IB; Kelsey JW; Hatzinger PB Environ Toxicol Chem; 2011 Jan; 30(1):112-23. PubMed ID: 20853447 [TBL] [Abstract][Full Text] [Related]
13. Dietary copper exposure and recovery in Nile tilapia, Oreochromis niloticus. Shaw BJ; Handy RD Aquat Toxicol; 2006 Feb; 76(2):111-21. PubMed ID: 16298437 [TBL] [Abstract][Full Text] [Related]
14. Spectroscopic studies of interactions between C.I. Reactive Orange 16 with alkyltrimethylammonium bromide surfactants. Akbaş H; Taner T Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jul; 73(1):150-3. PubMed ID: 19286417 [TBL] [Abstract][Full Text] [Related]
15. Metal and pharmaceutical mixtures: is ion loss the mechanism underlying acute toxicity and widespread additive toxicity in zebrafish? Alsop D; Wood CM Aquat Toxicol; 2013 Sep; 140-141():257-67. PubMed ID: 23831971 [TBL] [Abstract][Full Text] [Related]
16. Variability in antioxidant/detoxification enzymes of Labeo rohita exposed to an azo dye, acid black (AB). Kaur S; Kaur A Comp Biochem Physiol C Toxicol Pharmacol; 2015 Jan; 167():108-16. PubMed ID: 25277676 [TBL] [Abstract][Full Text] [Related]
17. Equilibrium partitioning theory to predict the sediment toxicity of the anionic surfactant C(12)-2-LAS to Corophium volutator. Rico-Rico A; Temara A; Hermens JL Environ Pollut; 2009 Feb; 157(2):575-81. PubMed ID: 18947912 [TBL] [Abstract][Full Text] [Related]
18. Spectrophotometric studies of anionic dye-cationic surfactant interactions in mixture of cationic and nonionic surfactants. Akbaş H; Kartal C Spectrochim Acta A Mol Biomol Spectrosc; 2005 Mar; 61(5):961-6. PubMed ID: 15683803 [TBL] [Abstract][Full Text] [Related]
19. Molecular exciton theory calculations based on experimental results for Solophenyl red 3BL azo dye-surfactants interactions. Hassanzadeh A; Zeini-Isfahani A; Habibi MH Spectrochim Acta A Mol Biomol Spectrosc; 2006 May; 64(2):464-76. PubMed ID: 16644265 [TBL] [Abstract][Full Text] [Related]
20. A spectral approach to determine location and orientation of azo dyes within surfactant aggregates. Karukstis KK; Litz JP; Garber MB; Angell LM; Korir GK Spectrochim Acta A Mol Biomol Spectrosc; 2010 Apr; 75(4):1354-61. PubMed ID: 20117043 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]