BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 26537302)

  • 1. Anatomy of the red cell membrane skeleton: unanswered questions.
    Lux SE
    Blood; 2016 Jan; 127(2):187-99. PubMed ID: 26537302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Molecular interactions of membrane proteins and erythrocyte deformability].
    Boivin P
    Pathol Biol (Paris); 1984 Jun; 32(6):717-35. PubMed ID: 6235477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastructure of the intact skeleton of the human erythrocyte membrane.
    Shen BW; Josephs R; Steck TL
    J Cell Biol; 1986 Mar; 102(3):997-1006. PubMed ID: 2936753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectrin-ankyrin interaction mechanics: A key force balance factor in the red blood cell membrane skeleton.
    Saito M; Watanabe-Nakayama T; Machida S; Osada T; Afrin R; Ikai A
    Biophys Chem; 2015; 200-201():1-8. PubMed ID: 25866912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erythrocyte membrane model with explicit description of the lipid bilayer and the spectrin network.
    Li H; Lykotrafitis G
    Biophys J; 2014 Aug; 107(3):642-653. PubMed ID: 25099803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Structure of erythrocyte membrane skeleton].
    Takakuwa Y; Manno S
    Nihon Rinsho; 1996 Sep; 54(9):2341-7. PubMed ID: 8890561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cysteine shotgun-mass spectrometry (CS-MS) reveals dynamic sequence of protein structure changes within mutant and stressed cells.
    Krieger CC; An X; Tang HY; Mohandas N; Speicher DW; Discher DE
    Proc Natl Acad Sci U S A; 2011 May; 108(20):8269-74. PubMed ID: 21527722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane skeleton-bilayer interaction is not the major determinant of membrane phospholipid asymmetry in human erythrocytes.
    Gudi SR; Kumar A; Bhakuni V; Gokhale SM; Gupta CM
    Biochim Biophys Acta; 1990 Mar; 1023(1):63-72. PubMed ID: 2317498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Freely turning over palmitate in erythrocyte membrane proteins is not responsible for the anchoring of lipid rafts to the spectrin skeleton: a study with bio-orthogonal chemical probes.
    Ciana A; Achilli C; Hannoush RN; Risso A; Balduini C; Minetti G
    Biochim Biophys Acta; 2013 Mar; 1828(3):924-31. PubMed ID: 23219804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Spectrin--variety of functions hidden in the structure].
    Wolny M; Wróblewska AM; Machnicka B; Sikorski AF
    Postepy Biochem; 2012; 58(3):245-54. PubMed ID: 23373410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of the axon plasma membrane structure and its effects on protein diffusion.
    Zhang Y; Tzingounis AV; Lykotrafitis G
    PLoS Comput Biol; 2019 May; 15(5):e1007003. PubMed ID: 31048841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectrin oligomerization is cooperatively coupled to membrane assembly: a linkage targeted by many hereditary hemolytic anemias?
    Giorgi M; Cianci CD; Gallagher PG; Morrow JS
    Exp Mol Pathol; 2001 Jun; 70(3):215-30. PubMed ID: 11418000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectrin and phospholipids - the current picture of their fascinating interplay.
    Bogusławska DM; Machnicka B; Hryniewicz-Jankowska A; Czogalla A
    Cell Mol Biol Lett; 2014 Mar; 19(1):158-79. PubMed ID: 24569979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The spectrin-actin junction of erythrocyte membrane skeletons.
    Bennett V
    Biochim Biophys Acta; 1989 Jan; 988(1):107-21. PubMed ID: 2642392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Red cell membrane polypeptides under normal conditions and in genetic disorders.
    Delaunay J
    Transfus Clin Biol; 1995; 2(4):207-16. PubMed ID: 8542017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adducin forms a bridge between the erythrocyte membrane and its cytoskeleton and regulates membrane cohesion.
    Anong WA; Franco T; Chu H; Weis TL; Devlin EE; Bodine DM; An X; Mohandas N; Low PS
    Blood; 2009 Aug; 114(9):1904-12. PubMed ID: 19567882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphatidylserine binding sites in erythroid spectrin: location and implications for membrane stability.
    An X; Guo X; Sum H; Morrow J; Gratzer W; Mohandas N
    Biochemistry; 2004 Jan; 43(2):310-5. PubMed ID: 14717584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The spectrin-ankyrin-4.1-adducin membrane skeleton: adapting eukaryotic cells to the demands of animal life.
    Baines AJ
    Protoplasma; 2010 Aug; 244(1-4):99-131. PubMed ID: 20668894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of calmodulin on the human red cell membrane skeleton.
    Strömqvist M; Berglund A; Shanbhag VP; Backman L
    Biochemistry; 1988 Feb; 27(4):1104-10. PubMed ID: 3365376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectrin-based membrane skeleton: a multipotential adaptor between plasma membrane and cytoplasm.
    Bennett V
    Physiol Rev; 1990 Oct; 70(4):1029-65. PubMed ID: 2271059
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 16.