These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 26537302)

  • 41. Spectrin properties and the elasticity of the red blood cell membrane skeleton.
    Hansen J; Skalak R; Chien S; Hoger A
    Biorheology; 1997; 34(4-5):327-48. PubMed ID: 9578807
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A spectrin membrane skeleton of the Golgi complex.
    Beck KA; Nelson WJ
    Biochim Biophys Acta; 1998 Aug; 1404(1-2):153-60. PubMed ID: 9714784
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The lens membrane skeleton contains structures preferentially enriched in spectrin-actin or tropomodulin-actin complexes.
    Woo MK; Lee A; Fischer RS; Moyer J; Fowler VM
    Cell Motil Cytoskeleton; 2000 Aug; 46(4):257-68. PubMed ID: 10962480
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanism of control of erythrocyte shape: a possible relationship to band 3.
    Wong P
    J Theor Biol; 1994 Nov; 171(2):197-205. PubMed ID: 7844997
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Control of band 3 lateral and rotational mobility by band 4.2 in intact erythrocytes: release of band 3 oligomers from low-affinity binding sites.
    Golan DE; Corbett JD; Korsgren C; Thatte HS; Hayette S; Yawata Y; Cohen CM
    Biophys J; 1996 Mar; 70(3):1534-42. PubMed ID: 8785311
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Human red cell cytoskeleton: structure, functions, abnormalities (author's transl)].
    Garbarz M; Dhermy D; Boivin P
    Sem Hop; 1982 Apr; 58(16):1005-13. PubMed ID: 6283663
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanochemistry of protein 4.1's spectrin-actin-binding domain: ternary complex interactions, membrane binding, network integration, structural strengthening.
    Discher DE; Winardi R; Schischmanoff PO; Parra M; Conboy JG; Mohandas N
    J Cell Biol; 1995 Aug; 130(4):897-907. PubMed ID: 7642705
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues.
    Bennett V; Baines AJ
    Physiol Rev; 2001 Jul; 81(3):1353-92. PubMed ID: 11427698
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ultrastructure and immunocytochemistry of the isolated human erythrocyte membrane skeleton.
    Ursitti JA; Wade JB
    Cell Motil Cytoskeleton; 1993; 25(1):30-42. PubMed ID: 8519066
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modeling of band-3 protein diffusion in the normal and defective red blood cell membrane.
    Li H; Zhang Y; Ha V; Lykotrafitis G
    Soft Matter; 2016 Apr; 12(15):3643-53. PubMed ID: 26977476
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [The cytoskeletal proteins of erythrocytes].
    Goncharov EI; Pinaev GP
    Tsitologiia; 1988 Jan; 30(1):5-18. PubMed ID: 3282371
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Plasmodium falciparum erythrocyte membrane protein 3 (PfEMP3) destabilizes erythrocyte membrane skeleton.
    Pei X; Guo X; Coppel R; Mohandas N; An X
    J Biol Chem; 2007 Sep; 282(37):26754-26758. PubMed ID: 17626011
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular interactions governing red cell membrane structure.
    Tyler JM; Branton D
    Prog Clin Biol Res; 1981; 56():79-93. PubMed ID: 7199149
    [No Abstract]   [Full Text] [Related]  

  • 54. Modulation of spectrin-actin assembly by erythrocyte adducin.
    Gardner K; Bennett V
    Nature; 1987 Jul 23-29; 328(6128):359-62. PubMed ID: 3600811
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Red cell membrane skeleton: structure-function relationships.
    Palek J; Liu SC
    Prog Clin Biol Res; 1980; 43():21-44. PubMed ID: 6999502
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hereditary elliptocytosis, spherocytosis and related disorders: consequences of a deficiency or a mutation of membrane skeletal proteins.
    Palek J
    Blood Rev; 1987 Sep; 1(3):147-68. PubMed ID: 3332099
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Atomic force microscopy of the erythrocyte membrane skeleton.
    Swihart AH; Mikrut JM; Ketterson JB; Macdonald RC
    J Microsc; 2001 Dec; 204(Pt 3):212-25. PubMed ID: 11903798
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interaction between protein 4.1R and spectrin heterodimers.
    Zhang DQ; Wang YP; Wang WH; Sui XM; Jiang JQ; Jiang XM; Xu ZS; Liu YG
    Mol Med Rep; 2011; 4(4):651-4. PubMed ID: 21468547
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biogenesis of the avian erythroid membrane skeleton: receptor-mediated assembly and stabilization of ankyrin (goblin) and spectrin.
    Moon RT; Lazarides E
    J Cell Biol; 1984 May; 98(5):1899-904. PubMed ID: 6233291
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Conformational Distortions of the Red Blood Cell Spectrin Matrix Nanostructure in Response to Temperature Changes
    Kozlova E; Chernysh A; Sergunova V; Manchenko E; Moroz V; Kozlov A
    Scanning; 2019; 2019():8218912. PubMed ID: 31198487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.