These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 2653739)

  • 1. A digital image microscopy system for rare-event detection using fluorescent probes.
    Lee BR; Haseman DB; Reynolds CP
    Cytometry; 1989 May; 10(3):256-62. PubMed ID: 2653739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection and analysis of cancer cells in blood and bone marrow using a rare event imaging system.
    Kraeft SK; Sutherland R; Gravelin L; Hu GH; Ferland LH; Richardson P; Elias A; Chen LB
    Clin Cancer Res; 2000 Feb; 6(2):434-42. PubMed ID: 10690521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fluorescence digital image microscopy system for quantifying relative cell numbers in tissue culture plates.
    Proffitt RT; Tran JV; Reynolds CP
    Cytometry; 1996 Jul; 24(3):204-13. PubMed ID: 8800553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid fluorescence in situ hybridization with repetitive DNA probes: quantification by digital image analysis.
    Celeda D; Aldinger K; Haar FM; Hausmann M; Durm M; Ludwig H; Cremer C
    Cytometry; 1994 Sep; 17(1):13-25. PubMed ID: 8001456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scanning fluorescent microscopy is an alternative for quantitative fluorescent cell analysis.
    Varga VS; Bocsi J; Sipos F; Csendes G; Tulassay Z; Molnár B
    Cytometry A; 2004 Jul; 60(1):53-62. PubMed ID: 15229857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Terminal deoxynucleotidyl transferase-positive cells in trephine biopsies following bone marrow or peripheral stem cell transplantation reflect vigorous B-cell generation.
    Wolf E; Harms H; Winkler J; Reulbach U; Kirchner T; Niedobitek G; Baumann I
    Histopathology; 2005 Apr; 46(4):442-50. PubMed ID: 15810956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional molecular distribution in single cells analysed using the digital imaging microscope.
    Fay FS; Carrington W; Fogarty KE
    J Microsc; 1989 Feb; 153(Pt 2):133-49. PubMed ID: 2709406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Detection of residual disease in onco-hematology: the contribution of molecular biology].
    Henni T; Vidaud M; Bretagne S; Goossens M
    Pathol Biol (Paris); 1988 Jan; 36(1):91-5. PubMed ID: 3283682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of image analysis and immunostaining of bone marrow trephine biopsy specimens to quantify residual disease in patients with B-cell chronic lymphocytic leukemia.
    Gala JL; Guiot Y; Delannoy A; Scheiff JM; Philippe M; Martiat P
    Mod Pathol; 1999 Apr; 12(4):391-9. PubMed ID: 10229504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applicability of a noncooled video-rated CCD camera for detection of fluorescence in situ hybridization signals.
    Vrolijk J; Sloos WC; Verwoerd NP; Tanke HJ
    Cytometry; 1994 Jan; 15(1):2-11. PubMed ID: 8162822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic, real time imaging of ion activities in single living cells using fluorescence video microscopy and image analysis.
    Bouchelouche PN
    Scand J Clin Lab Invest Suppl; 1993; 214():27-39. PubMed ID: 8332849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genotype/phenotype analyses of low frequency tumor cells using computerize image microscopy.
    Litle VR; Lockett SJ; Pallavicini MG
    Cytometry; 1996 Apr; 23(4):344-9. PubMed ID: 8900478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of residual host cells after bone marrow transplantation using non-isotopic in situ hybridization and karyotype analysis.
    Wessman M; Popp S; Ruutu T; Volin L; Cremer T; Knuutila S
    Bone Marrow Transplant; 1993 Apr; 11(4):279-84. PubMed ID: 8485475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FISH and chips: automation of fluorescent dot counting in interphase cell nuclei.
    Netten H; Young IT; van Vliet LJ; Tanke HJ; Vroljik H; Sloos WC
    Cytometry; 1997 May; 28(1):1-10. PubMed ID: 9136750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microcomputer software and interface for control of a microscope scanning stage.
    Lee BR; Ludl H; Reynolds CP
    Anal Quant Cytol Histol; 1988 Feb; 10(1):47-53. PubMed ID: 3355649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined automatic immunological and molecular cytogenetic analysis allows exact identification and quantification of tumor cells in the bone marrow.
    Méhes G; Luegmayr A; Ambros IM; Ladenstein R; Ambros PF
    Clin Cancer Res; 2001 Jul; 7(7):1969-75. PubMed ID: 11448912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Usefulness of detection of minimal residual disease by 'hypermetaphase' fluorescent in situ hybridization after allogeneic BMT for chronic myelogenous leukemia.
    Seong D; Giralt S; Fischer H; Hayes K; Glassman A; Arlinghaus R; Xu J; Kantarjian H; Siciliano M; Champlin R
    Bone Marrow Transplant; 1997 Mar; 19(6):565-70. PubMed ID: 9085736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytoplasmic tutor: a program for teaching interpretation of a microscope-based laboratory test.
    Astion ML; Hutchinson K; Ching AK; Pagliaro LJ; Wener MH
    MD Comput; 1994; 11(5):301-6. PubMed ID: 7968388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-lapse total internal reflection fluorescence video of acetylcholine receptor cluster formation on myotubes.
    Wang MD; Axelrod D
    Dev Dyn; 1994 Sep; 201(1):29-40. PubMed ID: 7803845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High resolution scanning of absorbing and fluorescent electrophoresis gels using video image analysis.
    Häder DP; Truss M
    Comput Appl Biosci; 1987 Nov; 3(4):339-43. PubMed ID: 3453243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.