BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 26537407)

  • 41. Interdomain interactions modulate collective dynamics of the metal-binding domains in the Wilson disease protein.
    Rodriguez-Granillo A; Crespo A; Wittung-Stafshede P
    J Phys Chem B; 2010 Feb; 114(5):1836-48. PubMed ID: 20078131
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Direct interactions of adaptor protein complexes 1 and 2 with the copper transporter ATP7A mediate its anterograde and retrograde trafficking.
    Yi L; Kaler SG
    Hum Mol Genet; 2015 May; 24(9):2411-25. PubMed ID: 25574028
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metallothioneins regulate ATP7A trafficking and control cell viability during copper deficiency and excess.
    Gudekar N; Shanbhag V; Wang Y; Ralle M; Weisman GA; Petris MJ
    Sci Rep; 2020 May; 10(1):7856. PubMed ID: 32398691
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis.
    La Fontaine S; Mercer JF
    Arch Biochem Biophys; 2007 Jul; 463(2):149-67. PubMed ID: 17531189
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Roles of copper chaperone for superoxide dismutase 1 and metallothionein in copper homeostasis.
    Miyayama T; Ishizuka Y; Iijima T; Hiraoka D; Ogra Y
    Metallomics; 2011 Jul; 3(7):693-701. PubMed ID: 21409224
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functional roles of metal binding domains of the Archaeoglobus fulgidus Cu(+)-ATPase CopA.
    Mandal AK; Argüello JM
    Biochemistry; 2003 Sep; 42(37):11040-7. PubMed ID: 12974640
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Increased expression of the copper efflux transporter ATP7A mediates resistance to cisplatin, carboplatin, and oxaliplatin in ovarian cancer cells.
    Samimi G; Safaei R; Katano K; Holzer AK; Rochdi M; Tomioka M; Goodman M; Howell SB
    Clin Cancer Res; 2004 Jul; 10(14):4661-9. PubMed ID: 15269138
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Solution structure of the N-domain of Wilson disease protein: distinct nucleotide-binding environment and effects of disease mutations.
    Dmitriev O; Tsivkovskii R; Abildgaard F; Morgan CT; Markley JL; Lutsenko S
    Proc Natl Acad Sci U S A; 2006 Apr; 103(14):5302-7. PubMed ID: 16567646
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Distinct functional roles for the Menkes and Wilson copper translocating P-type ATPases in human placental cells.
    Hardman B; Michalczyk A; Greenough M; Camakaris J; Mercer J; Ackland L
    Cell Physiol Biochem; 2007; 20(6):1073-84. PubMed ID: 17975309
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Probing functional roles of Wilson disease protein (ATP7B) copper-binding domains in yeast.
    Ponnandai Shanmugavel K; Petranovic D; Wittung-Stafshede P
    Metallomics; 2017 Jul; 9(7):981-988. PubMed ID: 28653724
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Copper-dependent interaction of glutaredoxin with the N termini of the copper-ATPases (ATP7A and ATP7B) defective in Menkes and Wilson diseases.
    Lim CM; Cater MA; Mercer JF; La Fontaine S
    Biochem Biophys Res Commun; 2006 Sep; 348(2):428-36. PubMed ID: 16884690
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Human Copper Chaperone Atox1 Translocates to the Nucleus but does not Bind DNA In Vitro.
    Kahra D; Mondol T; Niemiec MS; Wittung-Stafshede P
    Protein Pept Lett; 2015; 22(6):532-8. PubMed ID: 25962064
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Unraveling Copper Exchange in the Atox1-Cu(I)-Mnk1 Heterodimer: A Simulation Approach.
    Fortino M; Arnesano F; Pietropaolo A
    J Phys Chem B; 2024 Jun; 128(22):5336-5343. PubMed ID: 38780400
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mammalian copper-transporting P-type ATPases, ATP7A and ATP7B: emerging roles.
    La Fontaine S; Ackland ML; Mercer JF
    Int J Biochem Cell Biol; 2010 Feb; 42(2):206-9. PubMed ID: 19922814
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Probing transient copper chaperone-Wilson disease protein interactions at the single-molecule level with nanovesicle trapping.
    Benítez JJ; Keller AM; Ochieng P; Yatsunyk LA; Huffman DL; Rosenzweig AC; Chen P
    J Am Chem Soc; 2008 Feb; 130(8):2446-7. PubMed ID: 18247622
    [No Abstract]   [Full Text] [Related]  

  • 56. Ceruloplasmin gene expression profile changes in the rat mammary gland during pregnancy, lactation and involution.
    Platonova NA; Orlov IA; Klotchenko SA; Babich VS; Ilyechova EY; Babich PS; Garmai YP; Vasin AV; Tsymbalenko NV; Puchkova LV
    J Trace Elem Med Biol; 2017 Sep; 43():126-134. PubMed ID: 28089327
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Copper trafficking in eukaryotic systems: current knowledge from experimental and computational efforts.
    Magistrato A; Pavlin M; Qasem Z; Ruthstein S
    Curr Opin Struct Biol; 2019 Oct; 58():26-33. PubMed ID: 31176065
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reconstitution of ceruloplasmin by the Cu(I)-glutathione complex. Evidence for a role of Mg2+ and ATP.
    Musci G; Di Marco S; Bellenchi GC; Calabrese L
    J Biol Chem; 1996 Jan; 271(4):1972-8. PubMed ID: 8567646
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transmembrane Cu(I) P-type ATPase pumps are electrogenic uniporters.
    Abeyrathna N; Abeyrathna S; Morgan MT; Fahrni CJ; Meloni G
    Dalton Trans; 2020 Nov; 49(45):16082-16094. PubMed ID: 32469032
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of ATP7A overexpression in mice on copper transport and metabolism in lactation and gestation.
    Wadwa J; Chu YH; Nguyen N; Henson T; Figueroa A; Llanos R; Ackland ML; Michalczyk A; Fullriede H; Brennan G; Mercer JF; Linder MC
    Physiol Rep; 2014 Jan; 2(1):e00195. PubMed ID: 24744874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.