These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 26537615)

  • 1. Predicting drug side effects by multi-label learning and ensemble learning.
    Zhang W; Liu F; Luo L; Zhang J
    BMC Bioinformatics; 2015 Nov; 16():365. PubMed ID: 26537615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative prediction of drug side effects based on drug-related features.
    Niu Y; Zhang W
    Interdiscip Sci; 2017 Sep; 9(3):434-444. PubMed ID: 28516319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data.
    Zhang W; Chen Y; Liu F; Luo F; Tian G; Li X
    BMC Bioinformatics; 2017 Jan; 18(1):18. PubMed ID: 28056782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate prediction of immunogenic T-cell epitopes from epitope sequences using the genetic algorithm-based ensemble learning.
    Zhang W; Niu Y; Zou H; Luo L; Liu Q; Wu W
    PLoS One; 2015; 10(5):e0128194. PubMed ID: 26020952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational models for the prediction of adverse cardiovascular drug reactions.
    Jamal S; Ali W; Nagpal P; Grover S; Grover A
    J Transl Med; 2019 May; 17(1):171. PubMed ID: 31118067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facilitating prediction of adverse drug reactions by using knowledge graphs and multi-label learning models.
    Muñoz E; Novácek V; Vandenbussche PY
    Brief Bioinform; 2019 Jan; 20(1):190-202. PubMed ID: 28968655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of clinical factors related to prediction of alcohol use disorder from electronic health records using feature selection methods.
    Ebrahimi A; Wiil UK; Naemi A; Mansourvar M; Andersen K; Nielsen AS
    BMC Med Inform Decis Mak; 2022 Nov; 22(1):304. PubMed ID: 36424597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Network inference with ensembles of bi-clustering trees.
    Pliakos K; Vens C
    BMC Bioinformatics; 2019 Oct; 20(1):525. PubMed ID: 31660848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ensemble Prediction of Synergistic Drug Combinations Incorporating Biological, Chemical, Pharmacological, and Network Knowledge.
    Ding P; Yin R; Luo J; Kwoh CK
    IEEE J Biomed Health Inform; 2019 May; 23(3):1336-1345. PubMed ID: 29994408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inverse similarity and reliable negative samples for drug side-effect prediction.
    Zheng Y; Peng H; Ghosh S; Lan C; Li J
    BMC Bioinformatics; 2019 Feb; 19(Suppl 13):554. PubMed ID: 30717666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug-target interaction prediction with tree-ensemble learning and output space reconstruction.
    Pliakos K; Vens C
    BMC Bioinformatics; 2020 Feb; 21(1):49. PubMed ID: 32033537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting human splicing branchpoints by combining sequence-derived features and multi-label learning methods.
    Zhang W; Zhu X; Fu Y; Tsuji J; Weng Z
    BMC Bioinformatics; 2017 Dec; 18(Suppl 13):464. PubMed ID: 29219070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Machine Learning Ensemble Classifier for Early Prediction of Diabetic Retinopathy.
    S K S; P A
    J Med Syst; 2017 Nov; 41(12):201. PubMed ID: 29124453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hierarchical anatomical classification schema for prediction of phenotypic side effects.
    Wadhwa S; Gupta A; Dokania S; Kanji R; Bagler G
    PLoS One; 2018; 13(3):e0193959. PubMed ID: 29494708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational Prediction of Drug-Target Interactions via Ensemble Learning.
    Ezzat A; Wu M; Li X; Kwoh CK
    Methods Mol Biol; 2019; 1903():239-254. PubMed ID: 30547446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PeNGaRoo, a combined gradient boosting and ensemble learning framework for predicting non-classical secreted proteins.
    Zhang Y; Yu S; Xie R; Li J; Leier A; Marquez-Lago TT; Akutsu T; Smith AI; Ge Z; Wang J; Lithgow T; Song J
    Bioinformatics; 2020 Feb; 36(3):704-712. PubMed ID: 31393553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel machine learning model based on sparse structure learning with adaptive graph regularization for predicting drug side effects.
    Liang X; Li J; Fu Y; Qu L; Tan Y; Zhang P
    J Biomed Inform; 2022 Aug; 132():104131. PubMed ID: 35840061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semi-supervised multi-label collective classification ensemble for functional genomics.
    Wu Q; Ye Y; Ho SS; Zhou S
    BMC Genomics; 2014; 15 Suppl 9(Suppl 9):S17. PubMed ID: 25521242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DrugClust: A machine learning approach for drugs side effects prediction.
    Dimitri GM; Lió P
    Comput Biol Chem; 2017 Jun; 68():204-210. PubMed ID: 28391063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning Techniques for Predicting Drug-Related Side Effects: A Scoping Review.
    Toni E; Ayatollahi H; Abbaszadeh R; Fotuhi Siahpirani A
    Pharmaceuticals (Basel); 2024 Jun; 17(6):. PubMed ID: 38931462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.