These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 2653763)
1. Bioactivation of nephrotoxic haloalkenes by glutathione conjugation: formation of toxic and mutagenic intermediates by cysteine conjugate beta-lyase. Dekant W; Vamvakas S; Anders MW Drug Metab Rev; 1989; 20(1):43-83. PubMed ID: 2653763 [No Abstract] [Full Text] [Related]
2. Glutathione-dependent bioactivation of haloalkenes. Anders MW; Dekant W Annu Rev Pharmacol Toxicol; 1998; 38():501-37. PubMed ID: 9597164 [TBL] [Abstract][Full Text] [Related]
3. Cysteine conjugate beta-lyase-dependent biotransformation of the cysteine S-conjugates of the sevoflurane degradation product 2-(fluoromethoxy)-1,1,3,3,3-pentafluoro-1-propene (compound A). Iyer RA; Anders MW Chem Res Toxicol; 1997 Jul; 10(7):811-9. PubMed ID: 9250416 [TBL] [Abstract][Full Text] [Related]
4. Organ-specific carcinogenicity of haloalkenes mediated by glutathione conjugation. Dekant W; Henschler D J Cancer Res Clin Oncol; 1999; 125(3-4):174-81. PubMed ID: 10235471 [TBL] [Abstract][Full Text] [Related]
5. Cysteine S-conjugate beta-lyases. Cooper AJ; Pinto JT Amino Acids; 2006 Feb; 30(1):1-15. PubMed ID: 16463021 [TBL] [Abstract][Full Text] [Related]
6. Stable transfection of LLC-PK1 cells with human microsomal glutathione S-transferase gene increases haloalkene glutathione S-conjugate formation and cytotoxicity. Otieno MA; Anders MW Biochem Biophys Res Commun; 1997 May; 234(2):481-4. PubMed ID: 9177297 [TBL] [Abstract][Full Text] [Related]
7. Biosynthesis of toxic glutathione conjugates from halogenated alkenes. Dekant W Toxicol Lett; 2003 Sep; 144(1):49-54. PubMed ID: 12919723 [TBL] [Abstract][Full Text] [Related]
8. L-alanine-glyoxylate aminotransferase II of rat kidney and liver mitochondria possesses cysteine S-conjugate beta-lyase activity: a contributing factor to the nephrotoxicity/hepatotoxicity of halogenated alkenes? Cooper AJ; Krasnikov BF; Okuno E; Jeitner TM Biochem J; 2003 Nov; 376(Pt 1):169-78. PubMed ID: 12859250 [TBL] [Abstract][Full Text] [Related]
9. Biosynthesis and biotransformation of glutathione S-conjugates to toxic metabolites. Anders MW; Lash L; Dekant W; Elfarra AA; Dohn DR Crit Rev Toxicol; 1988; 18(4):311-41. PubMed ID: 3288445 [TBL] [Abstract][Full Text] [Related]
10. Formation and fate of nephrotoxic and cytotoxic glutathione S-conjugates: cysteine conjugate beta-lyase pathway. Dekant W; Vamvakas S; Anders MW Adv Pharmacol; 1994; 27():115-62. PubMed ID: 8068551 [No Abstract] [Full Text] [Related]
11. Studies on the mechanism of nephrotoxicity and nephrocarcinogenicity of halogenated alkenes. Lock EA Crit Rev Toxicol; 1988; 19(1):23-42. PubMed ID: 3056657 [TBL] [Abstract][Full Text] [Related]
12. Roles of cysteine conjugate beta-lyase and S-oxidase in nephrotoxicity: studies with S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)-L-cysteine sulfoxide. Lash LH; Sausen PJ; Duescher RJ; Cooley AJ; Elfarra AA J Pharmacol Exp Ther; 1994 Apr; 269(1):374-83. PubMed ID: 8169843 [TBL] [Abstract][Full Text] [Related]
13. Cysteine conjugate beta-lyase-catalyzed bioactivation of bromine-containing cysteine S-conjugates: stoichiometry and formation of 2,2-difluoro-3-halothiiranes. Finkelstein MB; Dekant W; Anders MW Chem Res Toxicol; 1996; 9(1):227-31. PubMed ID: 8924595 [TBL] [Abstract][Full Text] [Related]
14. Role of cysteine S-conjugate beta-lyase in the metabolism of cisplatin. Zhang L; Hanigan MH J Pharmacol Exp Ther; 2003 Sep; 306(3):988-94. PubMed ID: 12750429 [TBL] [Abstract][Full Text] [Related]
15. Bioactivation of S-(2,2-dihalo-1,1-difluoroethyl)-L-cysteines and S-(trihalovinyl)-L-cysteines by cysteine S-conjugate beta-lyase: indications for formation of both thionoacylating species and thiiranes as reactive intermediates. Commandeur JN; King LJ; Koymans L; Vermeulen NP Chem Res Toxicol; 1996; 9(7):1092-102. PubMed ID: 8902263 [TBL] [Abstract][Full Text] [Related]
16. Chemical toxicology of reactive intermediates formed by the glutathione-dependent bioactivation of halogen-containing compounds. Anders MW Chem Res Toxicol; 2008 Jan; 21(1):145-59. PubMed ID: 17696489 [TBL] [Abstract][Full Text] [Related]
17. Metabolic activation of the nephrotoxic haloalkene 1,1,2-trichloro-3,3,3-trifluoro-1-propene by glutathione conjugation. Vamvakas S; Kremling E; Dekant W Biochem Pharmacol; 1989 Jul; 38(14):2297-304. PubMed ID: 2751695 [TBL] [Abstract][Full Text] [Related]
19. Glutathione-dependent biosynthesis and bioactivation of S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)-L-cysteine, the glutathione and cysteine S-conjugates of dichloroacetylene, in rat tissues and subcellular fractions. Patel N; Birner G; Dekant W; Anders MW Drug Metab Dispos; 1994; 22(1):143-7. PubMed ID: 8149874 [TBL] [Abstract][Full Text] [Related]
20. Evidence for metabolism of fluoromethyl 2,2-difluoro-1-(trifluoromethyl)vinyl ether (compound A), a sevoflurane degradation product, by cysteine conjugate beta-lyase. Spracklin DK; Kharasch ED Chem Res Toxicol; 1996 Jun; 9(4):696-702. PubMed ID: 8831812 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]