These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 26537761)
1. Maternal protein restriction that does not have an influence on the birthweight of the offspring induces morphological changes in kidneys reminiscent of phenotypes exhibited by intrauterine growth retardation rats. Yuasa K; Kondo T; Nagai H; Mino M; Takeshita A; Okada T Congenit Anom (Kyoto); 2016 Mar; 56(2):79-85. PubMed ID: 26537761 [TBL] [Abstract][Full Text] [Related]
2. Effect of postnatal high-protein diet on kidney function of rats exposed to intrauterine protein restriction. Chen J; Xu H; Shen Q; Guo W; Sun L Pediatr Res; 2010 Aug; 68(2):100-4. PubMed ID: 20453715 [TBL] [Abstract][Full Text] [Related]
3. Renal function and angiotensin AT1 receptor expression in young rats following intrauterine exposure to a maternal low-protein diet. Sahajpal V; Ashton N Clin Sci (Lond); 2003 Jun; 104(6):607-14. PubMed ID: 12519092 [TBL] [Abstract][Full Text] [Related]
4. Transient growth hormone therapy to rats with low protein-inflicted intrauterine growth restriction does not prevent elevated blood pressure in later life. Plank C; Grillhösl C; Ostreicher I; Meissner U; Struwe FG; Rauh M; Hartner A; Rascher W; Dötsch J Growth Factors; 2008 Dec; 26(6):355-64. PubMed ID: 18951274 [TBL] [Abstract][Full Text] [Related]
5. Maternal green tea polyphenol intake during lactation attenuates kidney injury in high-fat-diet-fed male offspring programmed by maternal protein restriction in rats. Kataoka S; Norikura T; Sato S J Nutr Biochem; 2018 Jun; 56():99-108. PubMed ID: 29525533 [TBL] [Abstract][Full Text] [Related]
6. Low-Protein Diet-Induced Fetal Growth Restriction Leads to Exaggerated Proliferative Response to Vascular Injury in Postnatal Life. Chisaka T; Mogi M; Nakaoka H; Kan-No H; Tsukuda K; Wang XL; Bai HY; Shan BS; Kukida M; Iwanami J; Higaki T; Ishii E; Horiuchi M Am J Hypertens; 2016 Jan; 29(1):54-62. PubMed ID: 26002925 [TBL] [Abstract][Full Text] [Related]
7. Ouabain Attenuates Cardiac Hypertrophy of Male Rat Offspring Exposed to Intrauterine Growth Restriction Following High-Salt Diet Challenge. Chen L; Yue J; Wu H; Yang J; Han X; Li J; Hu Y Reprod Sci; 2015 Dec; 22(12):1587-96. PubMed ID: 26071389 [TBL] [Abstract][Full Text] [Related]
8. Intrauterine growth retardation aggravates the course of acute mesangioproliferative glomerulonephritis in the rat. Plank C; Ostreicher I; Hartner A; Marek I; Struwe FG; Amann K; Hilgers KF; Rascher W; Dötsch J Kidney Int; 2006 Dec; 70(11):1974-82. PubMed ID: 17051140 [TBL] [Abstract][Full Text] [Related]
9. Programming of adult blood pressure by maternal protein restriction: role of nephrogenesis. Woods LL; Weeks DA; Rasch R Kidney Int; 2004 Apr; 65(4):1339-48. PubMed ID: 15086473 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of kidney dysfunction and angiotensinogen as an early novel biomarker of intrauterine growth restricted offspring rats. Murano Y; Nishizaki N; Endo A; Ikeda N; Someya T; Nakagawa M; Hara T; Sakuraya K; Hara S; Hirano D; Suzuki M; Shoji H; Fujinaga S; Ohtomo Y; Shimizu T Pediatr Res; 2015 Dec; 78(6):678-82. PubMed ID: 26270574 [TBL] [Abstract][Full Text] [Related]
11. Gestational low-protein intake enhances whole-kidney miR-192 and miR-200 family expression and epithelial-to-mesenchymal transition in rat adult male offspring. Sene LB; Rizzi VHG; Gontijo JAR; Boer PA J Exp Biol; 2018 May; 221(Pt 10):. PubMed ID: 29789348 [TBL] [Abstract][Full Text] [Related]
12. Increased Autophagy and Apoptosis in the Kidneys of Intrauterine Growth Restricted Rats. Stewart T; Kallash M; Vehaskari VM; Hodgeson SM; Aviles DH Fetal Pediatr Pathol; 2019 Jun; 38(3):185-194. PubMed ID: 30741571 [TBL] [Abstract][Full Text] [Related]
13. High protein intake in neonatal period induces glomerular hypertrophy and sclerosis in adulthood in rats born with IUGR. Boubred F; Delamaire E; Buffat C; Daniel L; Boquien CY; Darmaun D; Simeoni U Pediatr Res; 2016 Jan; 79(1-1):22-6. PubMed ID: 26372514 [TBL] [Abstract][Full Text] [Related]
14. Structural and functional development of small intestine in intrauterine growth retarded porcine offspring born to gilts fed diets with differing protein ratios throughout pregnancy. Mickiewicz M; Zabielski R; Grenier B; Le Normand L; Savary G; Holst JJ; Oswald IP; Metges CC; Guilloteau P J Physiol Pharmacol; 2012 Jun; 63(3):225-39. PubMed ID: 22791636 [TBL] [Abstract][Full Text] [Related]
15. [The effects of pregnancy malnutrition on the development of insulin resistance in rat offspring]. Huang TT; Qiu XS; Shen ZY; Ke ZY; Lai F Zhonghua Yu Fang Yi Xue Za Zhi; 2004 May; 38(3):182-5. PubMed ID: 15182487 [TBL] [Abstract][Full Text] [Related]
16. Influence of angiotensin II type 1 receptor-associated protein on prenatal development and adult hypertension after maternal dietary protein restriction during pregnancy. Tsukuda K; Mogi M; Iwanami J; Min LJ; Jing F; Ohshima K; Horiuchi M J Am Soc Hypertens; 2012; 6(5):324-30. PubMed ID: 22951100 [TBL] [Abstract][Full Text] [Related]
17. Maternal low-protein diet causes body weight loss in male, neonate Sprague-Dawley rats involving UCP-1-mediated thermogenesis. Claycombe KJ; Vomhof-DeKrey EE; Roemmich JN; Rhen T; Ghribi O J Nutr Biochem; 2015 Jul; 26(7):729-35. PubMed ID: 25858881 [TBL] [Abstract][Full Text] [Related]
18. Neonatal high protein intake enhances neonatal growth without significant adverse renal effects in spontaneous IUGR piglets. Boubred F; Jamin A; Buffat C; Daniel L; Borel P; Boudry G; Le Huëron-Luron I; Simeoni U Physiol Rep; 2017 May; 5(10):e13296. PubMed ID: 28554968 [TBL] [Abstract][Full Text] [Related]
19. miRNAs, target genes expression and morphological analysis on the heart in gestational protein-restricted offspring. Assalin HB; Gontijo JAR; Boer PA PLoS One; 2019; 14(4):e0210454. PubMed ID: 31034522 [TBL] [Abstract][Full Text] [Related]
20. Nutritional mismatch in postnatal life of low birth weight rat offspring leads to increased phosphorylation of hepatic eukaryotic initiation factor 2 α in adulthood. Sohi G; Revesz A; Hardy DB Metabolism; 2013 Oct; 62(10):1367-74. PubMed ID: 23768545 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]