These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 26537978)
1. Molecular dynamics investigations of mechanical behaviours in monocrystalline silicon due to nanoindentation at cryogenic temperatures and room temperature. Du X; Zhao H; Zhang L; Yang Y; Xu H; Fu H; Li L Sci Rep; 2015 Nov; 5():16275. PubMed ID: 26537978 [TBL] [Abstract][Full Text] [Related]
2. Investigations of Phase Transformation in Monocrystalline Silicon at Low Temperatures via Nanoindentation. Wang S; Liu H; Xu L; Du X; Zhao D; Zhu B; Yu M; Zhao H Sci Rep; 2017 Aug; 7(1):8682. PubMed ID: 28819254 [TBL] [Abstract][Full Text] [Related]
3. Reveal the Deformation Mechanism of (110) Silicon from Cryogenic Temperature to Elevated Temperature by Molecular Dynamics Simulation. Han J; Song Y; Tang W; Wang C; Fang L; Zhu H; Zhao J; Sun J Nanomaterials (Basel); 2019 Nov; 9(11):. PubMed ID: 31752128 [TBL] [Abstract][Full Text] [Related]
4. Evolution of metastable phases in silicon during nanoindentation: mechanism analysis and experimental verification. Mylvaganam K; Zhang LC; Eyben P; Mody J; Vandervorst W Nanotechnology; 2009 Jul; 20(30):305705. PubMed ID: 19584422 [TBL] [Abstract][Full Text] [Related]
5. Nanoindentation-induced phase transformation and structural deformation of monocrystalline germanium: a molecular dynamics simulation investigation. Lai M; Zhang X; Fang F Nanoscale Res Lett; 2013 Aug; 8(1):353. PubMed ID: 23947487 [TBL] [Abstract][Full Text] [Related]
7. Nanoindentation Induced Deformation and Pop-in Events in a Silicon Crystal: Molecular Dynamics Simulation and Experiment. Jiapeng S; Cheng L; Han J; Ma A; Fang L Sci Rep; 2017 Aug; 7(1):10282. PubMed ID: 28860496 [TBL] [Abstract][Full Text] [Related]
8. Atomistic Insights into the Phase Transformation of Single-Crystal Silicon during Nanoindentation. Chung YJ; Lee GH; Beom HG Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745410 [TBL] [Abstract][Full Text] [Related]
9. Effect of crystal plane orientation on the friction-induced nanofabrication on monocrystalline silicon. Yu B; Qian L Nanoscale Res Lett; 2013 Mar; 8(1):137. PubMed ID: 23522360 [TBL] [Abstract][Full Text] [Related]
10. Study on the Mechanical Properties of Monocrystalline Germanium Crystal Planes Based on Molecular Dynamics. Song L; Song J; Li J; Wang T; Zhao Z Micromachines (Basel); 2022 Mar; 13(3):. PubMed ID: 35334733 [TBL] [Abstract][Full Text] [Related]
11. Effect of crystal plane orientation on tribochemical removal of monocrystalline silicon. Xiao C; Guo J; Zhang P; Chen C; Chen L; Qian L Sci Rep; 2017 Jan; 7():40750. PubMed ID: 28084433 [TBL] [Abstract][Full Text] [Related]
12. Crystal Orientation Effect on the Subsurface Deformation of Monocrystalline Germanium in Nanometric Cutting. Lai M; Zhang X; Fang F Nanoscale Res Lett; 2017 Dec; 12(1):296. PubMed ID: 28445999 [TBL] [Abstract][Full Text] [Related]
13. Anisotropic Deformation Behavior and Indentation Size Effect of Monocrystalline BaF Du G; Yang X; Deng J; Guo Y; Yao T; Li M; Geng R Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834606 [TBL] [Abstract][Full Text] [Related]
14. The loading speed facilitating stress relaxation behaviors of surface-modified silicon: a molecular dynamics study. Chen J; Fang L; Chen H; Sun K; Dang S; Han J J Mol Model; 2022 May; 28(6):160. PubMed ID: 35596859 [TBL] [Abstract][Full Text] [Related]
15. General Molecular Dynamics Approach to Understand the Mechanical Anisotropy of Monocrystalline Silicon under the Nanoscale Effects of Point Defect. Wan W; Tang C; Zhang J; Zhou L Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443795 [TBL] [Abstract][Full Text] [Related]
16. Surface Orientation and Temperature Effects on the Interaction of Silicon with Water: Molecular Dynamics Simulations Using ReaxFF Reactive Force Field. Wen J; Ma T; Zhang W; van Duin AC; Lu X J Phys Chem A; 2017 Jan; 121(3):587-594. PubMed ID: 28045520 [TBL] [Abstract][Full Text] [Related]
17. Design and testing of a cryogenic indentation apparatus. Wang S; Xu H; Wang Y; Kong L; Wang Z; Liu S; Zhang J; Zhao H Rev Sci Instrum; 2019 Jan; 90(1):015117. PubMed ID: 30709167 [TBL] [Abstract][Full Text] [Related]
18. Investigations of Micro-Deformation in Monocrystalline Copper at Low Temperatures via Indentation. Wang S; Zhao D; Niu Y; Wang Z; Yang H; Zhao H Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888861 [TBL] [Abstract][Full Text] [Related]
19. Nanoindentation and deformation behaviors of silicon covered with amorphous SiO Chen J; Shi J; Wang Y; Sun J; Han J; Sun K; Fang L RSC Adv; 2018 Apr; 8(23):12597-12607. PubMed ID: 35541277 [TBL] [Abstract][Full Text] [Related]
20. Effects of Crystalline Anisotropy and Indenter Size on Nanoindentation by Multiscale Simulation. Li J; Ni Y; Wang H; Mei J Nanoscale Res Lett; 2009 Nov; 5(2):420-32. PubMed ID: 20672077 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]