These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 26538048)

  • 1. Evidence in Support of Exciton to Ligand Vibrational Coupling in Colloidal Quantum Dots.
    Lifshitz E
    J Phys Chem Lett; 2015 Nov; 6(21):4336-47. PubMed ID: 26538048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of ligands in determining the exciton relaxation dynamics in semiconductor quantum dots.
    Peterson MD; Cass LC; Harris RD; Edme K; Sung K; Weiss EA
    Annu Rev Phys Chem; 2014; 65():317-39. PubMed ID: 24364916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibrational spectroscopy of electronic processes in emerging photovoltaic materials.
    Jeong KS; Pensack RD; Asbury JB
    Acc Chem Res; 2013 Jul; 46(7):1538-47. PubMed ID: 23514085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA
    Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of Intraband and Interband Auger Processes in Colloidal Core-Shell Quantum Dots.
    Rabouw FT; Vaxenburg R; Bakulin AA; van Dijk-Moes RJ; Bakker HJ; Rodina A; Lifshitz E; L Efros A; Koenderink AF; Vanmaekelbergh D
    ACS Nano; 2015 Oct; 9(10):10366-76. PubMed ID: 26389562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupled Colloidal Quantum Dot Molecules.
    Koley S; Cui J; Panfil YE; Banin U
    Acc Chem Res; 2021 Mar; 54(5):1178-1188. PubMed ID: 33459013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auger Suppression in n-Type HgSe Colloidal Quantum Dots.
    Melnychuk C; Guyot-Sionnest P
    ACS Nano; 2019 Sep; 13(9):10512-10519. PubMed ID: 31436950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-photon absorption in CdSe colloidal quantum dots compared to organic molecules.
    Makarov NS; Lau PC; Olson C; Velizhanin KA; Solntsev KM; Kieu K; Kilina S; Tretiak S; Norwood RA; Peyghambarian N; Perry JW
    ACS Nano; 2014 Dec; 8(12):12572-86. PubMed ID: 25427158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV
    Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.
    Kim J; Wong CY; Scholes GD
    Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface ligands increase photoexcitation relaxation rates in CdSe quantum dots.
    Kilina S; Velizhanin KA; Ivanov S; Prezhdo OV; Tretiak S
    ACS Nano; 2012 Jul; 6(7):6515-24. PubMed ID: 22742432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoexcited electron and hole dynamics in semiconductor quantum dots: phonon-induced relaxation, dephasing, multiple exciton generation and recombination.
    Hyeon-Deuk K; Prezhdo OV
    J Phys Condens Matter; 2012 Sep; 24(36):363201. PubMed ID: 22906924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infrared Colloidal Quantum Dot Photovoltaics via Coupling Enhancement and Agglomeration Suppression.
    Ip AH; Kiani A; Kramer IJ; Voznyy O; Movahed HF; Levina L; Adachi MM; Hoogland S; Sargent EH
    ACS Nano; 2015 Sep; 9(9):8833-42. PubMed ID: 26266671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling of Excitons and Discrete Acoustic Phonons in Vibrationally Isolated Quantum Emitters.
    Werschler F; Hinz C; Froning F; Gumbsheimer P; Haase J; Negele C; de Roo T; Mecking S; Leitenstorfer A; Seletskiy DV
    Nano Lett; 2016 Sep; 16(9):5861-5. PubMed ID: 27550902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence of Phonon-Assisted Auger Recombination and Multiple Exciton Generation in Semiconductor Quantum Dots Revealed by Temperature-Dependent Phonon Dynamics.
    Hyeon-Deuk K; Kobayashi Y; Tamai N
    J Phys Chem Lett; 2014 Jan; 5(1):99-105. PubMed ID: 26276187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Green Stimulated Emission Boosted by Nonradiative Resonant Energy Transfer from Blue Quantum Dots.
    Gao Y; Yu G; Wang Y; Dang C; Sum TC; Sun H; Demir HV
    J Phys Chem Lett; 2016 Jul; 7(14):2772-8. PubMed ID: 27388758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of D2O/H2O Solvent Exchange on the Emission of HgTe and CdTe Quantum Dots: Polaron and Energy Transfer Effects.
    Wen Q; Kershaw SV; Kalytchuk S; Zhovtiuk O; Reckmeier C; Vasilevskiy MI; Rogach AL
    ACS Nano; 2016 Apr; 10(4):4301-11. PubMed ID: 26958866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size- and Temperature-Dependent Intraband Optical Properties of Heavily n-Doped PbS Colloidal Quantum Dot Solid-State Films.
    Ramiro I; Kundu B; Dalmases M; Ă–zdemir O; Pedrosa M; Konstantatos G
    ACS Nano; 2020 Jun; 14(6):7161-7169. PubMed ID: 32396326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochromic nanocrystal quantum dots.
    Wang C; Shim M; Guyot-Sionnest P
    Science; 2001 Mar; 291(5512):2390-2. PubMed ID: 11264530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.