These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 26538110)
1. Direct printing of patterned three-dimensional ultrafine fibrous scaffolds by stable jet electrospinning for cellular ingrowth. Yuan H; Zhou Q; Li B; Bao M; Lou X; Zhang Y Biofabrication; 2015 Nov; 7(4):045004. PubMed ID: 26538110 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of a Highly Aligned Neural Scaffold via a Table Top Stereolithography 3D Printing and Electrospinning. Lee SJ; Nowicki M; Harris B; Zhang LG Tissue Eng Part A; 2017 Jun; 23(11-12):491-502. PubMed ID: 27998214 [TBL] [Abstract][Full Text] [Related]
3. Stiffness of Aligned Fibers Regulates the Phenotypic Expression of Vascular Smooth Muscle Cells. Yi B; Shen Y; Tang H; Wang X; Li B; Zhang Y ACS Appl Mater Interfaces; 2019 Feb; 11(7):6867-6880. PubMed ID: 30676736 [TBL] [Abstract][Full Text] [Related]
4. Multiphoton crosslinking for biocompatible 3D printing of type I collagen. Bell A; Kofron M; Nistor V Biofabrication; 2015 Sep; 7(3):035007. PubMed ID: 26335389 [TBL] [Abstract][Full Text] [Related]
5. A tailored three-dimensionally printable agarose-collagen blend allows encapsulation, spreading, and attachment of human umbilical artery smooth muscle cells. Köpf M; Campos DF; Blaeser A; Sen KS; Fischer H Biofabrication; 2016 May; 8(2):025011. PubMed ID: 27205890 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional polycaprolactone scaffold via needleless electrospinning promotes cell proliferation and infiltration. Li D; Wu T; He N; Wang J; Chen W; He L; Huang C; Ei-Hamshary HA; Al-Deyab SS; Ke Q; Mo X Colloids Surf B Biointerfaces; 2014 Sep; 121():432-43. PubMed ID: 24996758 [TBL] [Abstract][Full Text] [Related]
7. Water-stable three-dimensional ultrafine fibrous scaffolds from keratin for cartilage tissue engineering. Xu H; Cai S; Xu L; Yang Y Langmuir; 2014 Jul; 30(28):8461-70. PubMed ID: 25010870 [TBL] [Abstract][Full Text] [Related]
8. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications. Attalla R; Ling C; Selvaganapathy P Biomed Microdevices; 2016 Feb; 18(1):17. PubMed ID: 26842949 [TBL] [Abstract][Full Text] [Related]
9. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542 [TBL] [Abstract][Full Text] [Related]
10. Control of cell growth on 3D-printed cell culture platforms for tissue engineering. Tan Z; Liu T; Zhong J; Yang Y; Tan W J Biomed Mater Res A; 2017 Dec; 105(12):3281-3292. PubMed ID: 28865175 [TBL] [Abstract][Full Text] [Related]
11. A review of evolution of electrospun tissue engineering scaffold: From two dimensions to three dimensions. Ngadiman NHA; Noordin MY; Idris A; Kurniawan D Proc Inst Mech Eng H; 2017 Jul; 231(7):597-616. PubMed ID: 28347262 [TBL] [Abstract][Full Text] [Related]
12. Controlling the porosity of fibrous scaffolds by modulating the fiber diameter and packing density. Soliman S; Sant S; Nichol JW; Khabiry M; Traversa E; Khademhosseini A J Biomed Mater Res A; 2011 Mar; 96(3):566-74. PubMed ID: 21254388 [TBL] [Abstract][Full Text] [Related]
13. Electrospinning of polyhydroxyalkanoate fibrous scaffolds: effects on electrospinning parameters on structure and properties. Volova T; Goncharov D; Sukovatyi A; Shabanov A; Nikolaeva E; Shishatskaya E J Biomater Sci Polym Ed; 2014; 25(4):370-93. PubMed ID: 24295429 [TBL] [Abstract][Full Text] [Related]
14. Direct E-jet printing of three-dimensional fibrous scaffold for tendon tissue engineering. Wu Y; Wang Z; Ying Hsi Fuh J; San Wong Y; Wang W; San Thian E J Biomed Mater Res B Appl Biomater; 2017 Apr; 105(3):616-627. PubMed ID: 26671608 [TBL] [Abstract][Full Text] [Related]
15. Electrohydrodynamic jet 3D printing of PCL/PVP composite scaffold for cell culture. Li K; Wang D; Zhao K; Song K; Liang J Talanta; 2020 May; 211():120750. PubMed ID: 32070610 [TBL] [Abstract][Full Text] [Related]
16. 3D cell culture and osteogenic differentiation of human bone marrow stromal cells plated onto jet-sprayed or electrospun micro-fiber scaffolds. Brennan MÁ; Renaud A; Gamblin AL; D'Arros C; Nedellec S; Trichet V; Layrolle P Biomed Mater; 2015 Aug; 10(4):045019. PubMed ID: 26238732 [TBL] [Abstract][Full Text] [Related]
17. Direct-Write, Self-Aligned Electrospinning on Paper for Controllable Fabrication of Three-Dimensional Structures. Luo G; Teh KS; Liu Y; Zang X; Wen Z; Lin L ACS Appl Mater Interfaces; 2015 Dec; 7(50):27765-70. PubMed ID: 26592741 [TBL] [Abstract][Full Text] [Related]
18. Fibrous biodegradable l-alanine-based scaffolds for vascular tissue engineering. Srinath D; Lin S; Knight DK; Rizkalla AS; Mequanint K J Tissue Eng Regen Med; 2014 Jul; 8(7):578-88. PubMed ID: 22899439 [TBL] [Abstract][Full Text] [Related]
19. Controlled heparin conjugation on electrospun poly(ε-caprolactone)/gelatin fibers for morphology-dependent protein delivery and enhanced cellular affinity. Lee J; Yoo JJ; Atala A; Lee SJ Acta Biomater; 2012 Jul; 8(7):2549-58. PubMed ID: 22465575 [TBL] [Abstract][Full Text] [Related]
20. A novel fibrous scaffold composed of electrospun porous poly (epsilon-caprolactone) fibers for bone tissue engineering. Nguyen TH; Bao TQ; Park I; Lee BT J Biomater Appl; 2013 Nov; 28(4):514-28. PubMed ID: 23075833 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]