BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 26538174)

  • 1. Chemical cues from fish heighten visual sensitivity in larval crabs through changes in photoreceptor structure and function.
    Charpentier CL; Cohen JH
    J Exp Biol; 2015 Nov; 218(Pt 21):3381-90. PubMed ID: 26538174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fish kairomones induce spine elongation and reduce predation in marine crab larvae.
    Charpentier CL; Wright AJ; Cohen JH
    Ecology; 2017 Aug; 98(8):1989-1995. PubMed ID: 28512864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kairomones from an estuarine fish increase visual sensitivity in brine shrimp (Artemia franciscana) from Great Salt Lake, Utah, USA.
    Charpentier CL; Cohen JH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 Feb; 204(2):197-208. PubMed ID: 29164331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of phototaxis in marine zooplankton.
    Jékely G; Colombelli J; Hausen H; Guy K; Stelzer E; Nédélec F; Arendt D
    Nature; 2008 Nov; 456(7220):395-9. PubMed ID: 19020621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Larval biology of the crab Rhithropanopeus harrisii (Gould): a synthesis.
    Forward RB
    Biol Bull; 2009 Jun; 216(3):243-56. PubMed ID: 19556592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Are vent crab behavioral preferences adaptations for habitat choice?
    Dahms HU; Tseng LC; Hwang JS
    PLoS One; 2017; 12(9):e0182649. PubMed ID: 28880871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alteration of photoresponses involved in diel vertical migration of a crab larva by fish mucus and degradation products of mucopolysaccharides.
    Forward RB; Rittschof D
    J Exp Mar Biol Ecol; 2000 Mar; 245(2):277-292. PubMed ID: 10699215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavioral plasticity in an invaded system: non-native whelks recognize risk from native crabs.
    Grason EW; Miner BG
    Oecologia; 2012 May; 169(1):105-15. PubMed ID: 22083283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ciliary and rhabdomeric photoreceptor-cell circuits form a spectral depth gauge in marine zooplankton.
    Verasztó C; Gühmann M; Jia H; Rajan VBV; Bezares-Calderón LA; Piñeiro-Lopez C; Randel N; Shahidi R; Michiels NK; Yokoyama S; Tessmar-Raible K; Jékely G
    Elife; 2018 May; 7():. PubMed ID: 29809157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fish-Released Kairomones Affect Mosquito Oviposition and Larval Life History.
    Silberbush A
    J Med Entomol; 2022 Jan; 59(1):78-82. PubMed ID: 34430976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seeing the light: photobehavior in fruit fly larvae.
    Keene AC; Sprecher SG
    Trends Neurosci; 2012 Feb; 35(2):104-10. PubMed ID: 22222349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orientation of the fiddler crab, Uca cumulanta: responses to chemical and visual cues.
    Chiussi R; Diaz H
    J Chem Ecol; 2002 Sep; 28(9):1787-96. PubMed ID: 12449506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Responses of the crab Heterozius rotundifrons to heterospecific chemical alarm cues: phylogeny vs. ecological overlap.
    Hazlett BA; McLay C
    J Chem Ecol; 2005 Mar; 31(3):671-7. PubMed ID: 15898508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vision is highly sensitive to oxygen availability in marine invertebrate larvae.
    McCormick LR; Levin LA; Oesch NW
    J Exp Biol; 2019 May; 222(Pt 10):. PubMed ID: 31019065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dedicated photoreceptor pathways in Drosophila larvae mediate navigation by processing either spatial or temporal cues.
    Humberg TH; Bruegger P; Afonso B; Zlatic M; Truman JW; Gershow M; Samuel A; Sprecher SG
    Nat Commun; 2018 Mar; 9(1):1260. PubMed ID: 29593252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Costs and compensation in zooplankton pigmentation under countervailing threats of ultraviolet radiation and predation.
    Bashevkin SM; Christy JH; Morgan SG
    Oecologia; 2020 May; 193(1):111-123. PubMed ID: 32314044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous alternation and locomotor activity in three species of marine crabs: green crab (Carcinus maenas), blue crab (Callinectes sapidus), and fiddler crab (Uca pugnax).
    Balcı F; Ramey-Balcı PA; Ruamps P
    J Comp Psychol; 2014 Feb; 128(1):65-73. PubMed ID: 24060243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predator-induced defences in Daphnia longicephala: location of kairomone receptors and timeline of sensitive phases to trait formation.
    Weiss LC; Leimann J; Tollrian R
    J Exp Biol; 2015 Sep; 218(Pt 18):2918-26. PubMed ID: 26400980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circadian rhythm in larval release by the crab Rhithropanopeus harrisii: entrainment model.
    Forward RB; Moeller BP; Cohen JH
    Biol Bull; 2014 Apr; 226(2):92-101. PubMed ID: 24797091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavior of red king crab larvae: phototaxis, geotaxis and rheotaxis.
    Shirley SM; Shirley TC
    Mar Behav Physiol; 1988; 13(4):369-88. PubMed ID: 11539849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.