These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 26538174)

  • 61. Photic input pathways that mediate the Drosophila larval response to light and circadian rhythmicity are developmentally related but functionally distinct.
    Hassan J; Iyengar B; Scantlebury N; Rodriguez Moncalvo V; Campos AR
    J Comp Neurol; 2005 Jan; 481(3):266-75. PubMed ID: 15593374
    [TBL] [Abstract][Full Text] [Related]  

  • 62. When a repellent becomes an attractant: harmful saponins are kairomones attracting the symbiotic Harlequin crab.
    Caulier G; Flammang P; Gerbaux P; Eeckhaut I
    Sci Rep; 2013; 3():2639. PubMed ID: 24026443
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The male blue crab, Callinectes sapidus, uses both chromatic and achromatic cues during mate choice.
    Baldwin J; Johnsen S
    J Exp Biol; 2012 Apr; 215(Pt 7):1184-91. PubMed ID: 22399664
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Functional morphology of giant mole crab larvae: a possible case of defensive enrollment.
    Rudolf NR; Haug C; Haug JT
    Zoological Lett; 2016; 2(1):17. PubMed ID: 27570630
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Different chemical cues originating from a shared predator induce common defense responses in two prey species.
    Takahara T; Doi H; Kohmatsu Y; Yamaoka R
    Anim Cogn; 2013 Jan; 16(1):147-53. PubMed ID: 23065237
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Pesticide exposure and inducible antipredator responses in the zooplankton grazer, Daphnia magna Straus.
    Pestana JL; Loureiro S; Baird DJ; Soares AM
    Chemosphere; 2010 Jan; 78(3):241-8. PubMed ID: 20004000
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Environmental and physiological controls of blue crab avoidance behavior during exposure to hypoxia.
    Bell GW; Eggleston DB; Noga EJ
    Biol Bull; 2009 Oct; 217(2):161-72. PubMed ID: 19875821
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effects of light intensity and pattern contrast on the ability of the land crab, Cardisoma guanhumi, to separate optic flow-field components.
    Johnson AP; Barnes WJ; Macauley MW
    Vis Neurosci; 2004; 21(6):895-904. PubMed ID: 15733344
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Systematic variations in microvilli banding patterns along fiddler crab rhabdoms.
    Alkaladi A; How MJ; Zeil J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Feb; 199(2):99-113. PubMed ID: 23108879
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Polarised light-sensitive interneurones in a swimming crab.
    Leggett LM
    Nature; 1976 Aug; 262(5570):709-11. PubMed ID: 958443
    [No Abstract]   [Full Text] [Related]  

  • 71. Modelling quantitative structure-activity relationships between animal behaviour and environmental signal molecules.
    Browne KA; Tamburri MN; Zimmer-Faust RK
    J Exp Biol; 1998 Jan; 201(Pt 2):245-58. PubMed ID: 9405312
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The molt cycle and its hormonal control in Rhithropanopeus harrisii larvae.
    Freeman JA; Costlow JD
    Dev Biol; 1980 Feb; 74(2):479-85. PubMed ID: 7371985
    [No Abstract]   [Full Text] [Related]  

  • 73. [Comparative study of the ultrastructure of androgenic glands from normal and eyestalkless crabs during larval life or after puberty in the species: Rhithropanopeus harrisii (Gould) and Callinectes sapidus Rathbun].
    Payen G; Costlow JD; Charniaux-Cotton H
    Gen Comp Endocrinol; 1971 Dec; 17(3):526-42. PubMed ID: 5157128
    [No Abstract]   [Full Text] [Related]  

  • 74. Predator-induced diel vertical migration inDaphnia: Enrichment and preliminary chemical characterization of a kairomone exuded by fish.
    von Elert E; Loose CJ
    J Chem Ecol; 1996 May; 22(5):885-95. PubMed ID: 24227612
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Light-induced migration behaviour of Daphnia modified by food and predator kairomones.
    Van gool E ; Ringelberg J
    Anim Behav; 1998 Sep; 56(3):741-747. PubMed ID: 9784225
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Larval release in brachyuran crustaceans Functional similarity of peptide pheromone receptor and catalytic site of trypsin.
    Rittschof D; Forward RB; Erickson BW
    J Chem Ecol; 1990 Apr; 16(4):1359-70. PubMed ID: 24263733
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Transcriptomic responses to predator kairomones in embryos of the aquatic snail
    Tills O; Truebano M; Feldmeyer B; Pfenninger M; Morgenroth H; Schell T; Rundle SD
    Ecol Evol; 2018 Nov; 8(22):11071-11082. PubMed ID: 30519426
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Acidification and
    Charpentier CL; Cohen JH
    R Soc Open Sci; 2016 Sep; 3(9):160311. PubMed ID: 27703697
    [TBL] [Abstract][Full Text] [Related]  

  • 79. THE SHADOW RESPONSE OF A. HYDROMEDUSAN (POLYORCHIS PENICILLATUS): BEHAVIORAL MECHANISMS CONTROLLING DIEL AND ONTOGENIC VERTICAL MIGRATION.
    Arkett SA
    Biol Bull; 1985 Oct; 169(2):297-312. PubMed ID: 29314927
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Chemical Mediation of Larval Release Behaviors in the Crab Neopanope sayi.
    De Vries MC; Rittschof D; Forward RB
    Biol Bull; 1991 Feb; 180(1):1-11. PubMed ID: 29303634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.