BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 26538255)

  • 21. Thermal treatment of municipal solid waste incineration fly ash: Impact of gas atmosphere on the volatility of major, minor, and trace elements.
    Lane DJ; Jokiniemi J; Heimonen M; Peräniemi S; Kinnunen NM; Koponen H; Lähde A; Karhunen T; Nivajärvi T; Shurpali N; Sippula O
    Waste Manag; 2020 Aug; 114():1-16. PubMed ID: 32622291
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Volatilisation of major, minor, and trace elements during thermal processing of fly ashes from waste- and wood-fired power plants in oxidising and reducing gas atmospheres.
    Lane DJ; Sippula O; Koponen H; Heimonen M; Peräniemi S; Lähde A; Kinnunen NM; Nivajärvi T; Shurpali N; Jokiniemi J
    Waste Manag; 2020 Feb; 102():698-709. PubMed ID: 31794929
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge.
    Smith SR
    Environ Int; 2009 Jan; 35(1):142-56. PubMed ID: 18691760
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of moisture on the release and enrichment of heavy metals during pyrolysis of municipal solid waste.
    Raclavská H; Corsaro A; Hlavsová A; Juchelková D; Zajonc O
    Waste Manag Res; 2015 Mar; 33(3):267-74. PubMed ID: 25653211
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative study on intercalation-exfoliation and thermal activation modified kaolin for heavy metals immobilization during high-organic solid waste pyrolysis.
    Du H; Zhong Z; Zhang B; Zhao D; Lai X; Wang N; Li J
    Chemosphere; 2021 Oct; 280():130714. PubMed ID: 33964742
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficiencies of metal separation and recovery in ash-melting of municipal solid waste under non-oxidative atmospheres with different reducing abilities.
    Okada T; Tomikawa H
    J Environ Manage; 2016 Jan; 166():147-55. PubMed ID: 26496845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Partitioning characteristics of targeted heavy metals in IZAYDAS hazardous waste incinerator.
    Bakoglu M; Karademir A; Ayberk S
    J Hazard Mater; 2003 Apr; 99(1):89-105. PubMed ID: 12686026
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Implication of heavy metals distribution for a municipal solid waste management system--a case study in Shanghai.
    Zhang H; He PJ; Shao LM
    Sci Total Environ; 2008 Sep; 402(2-3):257-67. PubMed ID: 18538827
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of FeCl3 on the distribution of the heavy metals Cd, Cu, Cr, and Zn in a simulated multimetal incineration system.
    Wang KS; Chiang KY; Tsai CC; Sun CJ; Tsai CC; Lin KL
    Environ Int; 2001 Apr; 26(4):257-63. PubMed ID: 11341294
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic vaporization of heavy metals during fluidized bed thermal treatment of municipal solid waste.
    Yu J; Sun L; Xiang J; Hu S; Su S
    Waste Manag; 2013 Feb; 33(2):340-6. PubMed ID: 23238522
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigation of heavy metal partitioning influenced by flue gas moisture and chlorine content during waste incineration.
    Li Q; Meng A; Jia J; Zhang Y
    J Environ Sci (China); 2010; 22(5):760-8. PubMed ID: 20608514
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physiochemical characterization and systematic investigation of metals extraction from fly and bottom ashes produced from municipal solid waste.
    Al-Ghouti MA; Khan M; Nasser MS; Al Saad K; Ee Heng OON
    PLoS One; 2020; 15(10):e0239412. PubMed ID: 33091005
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metal distribution in incineration residues of municipal solid waste (MSW) in Japan.
    Jung CH; Matsuto T; Tanaka N; Okada T
    Waste Manag; 2004; 24(4):381-91. PubMed ID: 15081066
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Volatility of heavy metals during incineration of tannery sludge in the presence of chlorides and phosphoric acid.
    Tang P; Zhao YC; Chen DZ; Xia FY
    Waste Manag Res; 2008 Aug; 26(4):369-76. PubMed ID: 18727329
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Effects of adsorbents on partitioning and fixation of heavy metals in the incineration process of sewage sludge].
    Liu JY; Sun SY; Chen T
    Huan Jing Ke Xue; 2013 Mar; 34(3):1166-73. PubMed ID: 23745430
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence on gaseous pollutants emissions and fly ash characteristics from co-combustion of municipal solid waste and coal by a drop tube furnace.
    Zhang S; Lin X; Chen Z; Li X; Jiang X; Yan J
    Waste Manag; 2018 Nov; 81():33-40. PubMed ID: 30527041
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How should greenhouse gas emissions be taken into account in the decision making of municipal solid waste management procurements? A case study of the South Karelia region, Finland.
    Hupponen M; Grönman K; Horttanainen M
    Waste Manag; 2015 Aug; 42():196-207. PubMed ID: 25936556
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Characteristic analysis of heavy metals' evaporation of MSWI fly ash].
    Yan JH; Li JX; Chi Y; Ni MJ; Cen KF
    Huan Jing Ke Xue; 2004 Mar; 25(2):170-3. PubMed ID: 15202258
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Partition of Zn, Cd, and Pb during co-combustion of sedum plumbizincicola and sewage sludge.
    Guo F; Zhong Z; Xue H
    Chemosphere; 2018 Apr; 197():50-56. PubMed ID: 29331718
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Laboratory study on the behaviour of spent AA household alkaline batteries in incineration.
    Almeida MF; Xará SM; Delgado J; Costa CA
    Waste Manag; 2009 Jan; 29(1):342-9. PubMed ID: 18544470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.