These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 26538328)

  • 21. Single-crystal silicon-based electrodes for unbiased solar water splitting: current status and prospects.
    Luo Z; Wang T; Gong J
    Chem Soc Rev; 2019 Apr; 48(7):2158-2181. PubMed ID: 30601502
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting.
    Hisatomi T; Kubota J; Domen K
    Chem Soc Rev; 2014 Nov; 43(22):7520-35. PubMed ID: 24413305
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An Optocatalytic Model for Semiconductor-Catalyst Water-Splitting Photoelectrodes Based on In Situ Optical Measurements on Operational Catalysts.
    Trotochaud L; Mills TJ; Boettcher SW
    J Phys Chem Lett; 2013 Mar; 4(6):931-5. PubMed ID: 26291358
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Constructing inverse opal structured hematite photoanodes via electrochemical process and their application to photoelectrochemical water splitting.
    Shi X; Zhang K; Shin K; Moon JH; Lee TW; Park JH
    Phys Chem Chem Phys; 2013 Jul; 15(28):11717-22. PubMed ID: 23752489
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring the Synthesis, Band Edge Insights, and Photoelectrochemical Water Splitting Properties of Lead Vanadates.
    Kalanur SS; Lee YJ; Seo H
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):25906-25917. PubMed ID: 34043320
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tungsten oxide nanostructures and nanocomposites for photoelectrochemical water splitting.
    Zheng G; Wang J; Liu H; Murugadoss V; Zu G; Che H; Lai C; Li H; Ding T; Gao Q; Guo Z
    Nanoscale; 2019 Oct; 11(41):18968-18994. PubMed ID: 31361294
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Water oxidation at hematite photoelectrodes: the role of surface states.
    Klahr B; Gimenez S; Fabregat-Santiago F; Hamann T; Bisquert J
    J Am Chem Soc; 2012 Mar; 134(9):4294-302. PubMed ID: 22303953
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Balancing Catalytic Activity and Interface Energetics of Electrocatalyst-Coated Photoanodes for Photoelectrochemical Water Splitting.
    Xu Z; Wang H; Wen Y; Li W; Sun C; He Y; Shi Z; Pei L; Chen Y; Yan S; Zou Z
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3624-3633. PubMed ID: 29308871
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancement of the efficiency of photocatalytic reduction of protons to hydrogen via molecular assembly.
    Wu LZ; Chen B; Li ZJ; Tung CH
    Acc Chem Res; 2014 Jul; 47(7):2177-85. PubMed ID: 24873498
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Augmented Z scheme blueprint for efficient solar water splitting system using quaternary chalcogenide absorber material.
    Sarswat PK; Bhattacharyya D; Free ML; Misra M
    Phys Chem Chem Phys; 2016 Feb; 18(5):3788-803. PubMed ID: 26762553
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rational Design and Construction of Cocatalysts for Semiconductor-Based Photo-Electrochemical Oxygen Evolution: A Comprehensive Review.
    Xu XT; Pan L; Zhang X; Wang L; Zou JJ
    Adv Sci (Weinh); 2019 Jan; 6(2):1801505. PubMed ID: 30693190
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metal Oxide Photoelectrodes for Solar Fuel Production, Surface Traps, and Catalysis.
    Sivula K
    J Phys Chem Lett; 2013 May; 4(10):1624-33. PubMed ID: 26282969
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural and Compositional Investigations on the Stability of Cuprous Oxide Nanowire Photocathodes for Photoelectrochemical Water Splitting.
    Son MK; Pan L; Mayer MT; Hagfeldt A; Grätzel M; Luo J
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):55080-55091. PubMed ID: 34761678
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unbiased photoelectrochemical water splitting in Z-scheme device using W/Mo-doped BiVO4 and Zn(x)Cd(1-x)Se.
    Park HS; Lee HC; Leonard KC; Liu G; Bard AJ
    Chemphyschem; 2013 Jul; 14(10):2277-87. PubMed ID: 23494937
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes.
    Sivula K; Le Formal F; Grätzel M
    ChemSusChem; 2011 Apr; 4(4):432-49. PubMed ID: 21416621
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrodeposition of (hydro)oxides for an oxygen evolution electrode.
    Yan Z; Liu H; Hao Z; Yu M; Chen X; Chen J
    Chem Sci; 2020 Apr; 11(39):10614-10625. PubMed ID: 34094316
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Silicon based photoelectrodes for photoelectrochemical water splitting.
    Fan R; Mi Z; Shen M
    Opt Express; 2019 Feb; 27(4):A51-A80. PubMed ID: 30876004
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Silicon-Based Heterojunction Integrated with a Molecular Excited State in a Water-Splitting Tandem Cell.
    Shan B; Brennaman MK; Troian-Gautier L; Liu Y; Nayak A; Klug CM; Li TT; Bullock RM; Meyer TJ
    J Am Chem Soc; 2019 Jul; 141(26):10390-10398. PubMed ID: 31244171
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemical Synthesis of p-Type CuFeO2 Electrodes for Use in a Photoelectrochemical Cell.
    Read CG; Park Y; Choi KS
    J Phys Chem Lett; 2012 Jul; 3(14):1872-6. PubMed ID: 26292007
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hybrid Microwave Annealing Synthesizes Highly Crystalline Nanostructures for (Photo)electrocatalytic Water Splitting.
    Zhang H; Lee JS
    Acc Chem Res; 2019 Nov; 52(11):3132-3142. PubMed ID: 31603645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.