These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 26538328)

  • 41. Strategies for stable water splitting via protected photoelectrodes.
    Bae D; Seger B; Vesborg PC; Hansen O; Chorkendorff I
    Chem Soc Rev; 2017 Apr; 46(7):1933-1954. PubMed ID: 28246670
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Polypyrrole-Ru(2,2'-bipyridine)3(2+)/MoSx structured composite film as a photocathode for the hydrogen evolution reaction.
    Lattach Y; Fortage J; Deronzier A; Moutet JC
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4476-80. PubMed ID: 25688728
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A comprehensive comparison of dye-sensitized NiO photocathodes for solar energy conversion.
    Wood CJ; Summers GH; Clark CA; Kaeffer N; Braeutigam M; Carbone LR; D'Amario L; Fan K; Farré Y; Narbey S; Oswald F; Stevens LA; Parmenter CD; Fay MW; La Torre A; Snape CE; Dietzek B; Dini D; Hammarström L; Pellegrin Y; Odobel F; Sun L; Artero V; Gibson EA
    Phys Chem Chem Phys; 2016 Apr; 18(16):10727-38. PubMed ID: 26734947
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hydrogen-evolving solar cells.
    Heller A
    Science; 1984 Mar; 223(4641):1141-8. PubMed ID: 17742920
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.
    Hammarström L
    Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrochemical Oxidation of Metal-Catechol Complexes as a New Synthesis Route to the High-Quality Ternary Photoelectrodes: A Case Study of Fe
    Lee D; Baltazar VU; Smart TJ; Ping Y; Choi KS
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29275-29284. PubMed ID: 32551469
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production.
    Steinmiller EM; Choi KS
    Proc Natl Acad Sci U S A; 2009 Dec; 106(49):20633-6. PubMed ID: 19934060
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dye-catalyst dyads for photoelectrochemical water oxidation based on metal-free sensitizers.
    Decavoli C; Boldrini CL; Trifiletti V; Luong S; Fenwick O; Manfredi N; Abbotto A
    RSC Adv; 2021 Jan; 11(10):5311-5319. PubMed ID: 35423072
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Solar-Driven Water Oxidation and Decoupled Hydrogen Production Mediated by an Electron-Coupled-Proton Buffer.
    Bloor LG; Solarska R; Bienkowski K; Kulesza PJ; Augustynski J; Symes MD; Cronin L
    J Am Chem Soc; 2016 Jun; 138(21):6707-10. PubMed ID: 27159121
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Crystal Facet Engineering of Photoelectrodes for Photoelectrochemical Water Splitting.
    Wang S; Liu G; Wang L
    Chem Rev; 2019 Apr; 119(8):5192-5247. PubMed ID: 30875200
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Efficient CuO/Ag
    Mustafa E; Dawi EA; Ibupoto ZH; Ibrahim AMM; Elsukova A; Liu X; Tahira A; Adam RE; Willander M; Nur O
    RSC Adv; 2023 Apr; 13(17):11297-11310. PubMed ID: 37057263
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Visible-Light-Responsive Photoanodes for Highly Active, Stable Water Oxidation.
    Seo J; Nishiyama H; Yamada T; Domen K
    Angew Chem Int Ed Engl; 2018 Jul; 57(28):8396-8415. PubMed ID: 29265720
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Water splitting on semiconductor catalysts under visible-light irradiation.
    Navarro Yerga RM; Alvarez Galván MC; del Valle F; Villoria de la Mano JA; Fierro JL
    ChemSusChem; 2009; 2(6):471-85. PubMed ID: 19536754
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improving BiVO4 photoanodes for solar water splitting through surface passivation.
    Liang Y; Messinger J
    Phys Chem Chem Phys; 2014 Jun; 16(24):12014-20. PubMed ID: 24845546
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Self-Supported Bi
    Wu M; Wang Y; Xu Y; Ming J; Zhou M; Xu R; Fu Q; Lei Y
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23647-23653. PubMed ID: 28640586
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Visible-light-induced water splitting based on two-step photoexcitation between dye-sensitized layered niobate and tungsten oxide photocatalysts in the presence of a triiodide/iodide shuttle redox mediator.
    Abe R; Shinmei K; Koumura N; Hara K; Ohtani B
    J Am Chem Soc; 2013 Nov; 135(45):16872-84. PubMed ID: 24128384
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation.
    Wang G; Ling Y; Lu X; Zhai T; Qian F; Tong Y; Li Y
    Nanoscale; 2013 May; 5(10):4129-33. PubMed ID: 23563928
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metal on metal oxide nanowire Co-catalyzed Si photocathode for solar water splitting.
    Sun K; Madsen K; Andersen P; Bao W; Sun Z; Wang D
    Nanotechnology; 2012 May; 23(19):194013. PubMed ID: 22539234
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Back electron-hole recombination in hematite photoanodes for water splitting.
    Le Formal F; Pendlebury SR; Cornuz M; Tilley SD; Grätzel M; Durrant JR
    J Am Chem Soc; 2014 Feb; 136(6):2564-74. PubMed ID: 24437340
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Amorphous molybdenum sulfides as hydrogen evolution catalysts.
    Morales-Guio CG; Hu X
    Acc Chem Res; 2014 Aug; 47(8):2671-81. PubMed ID: 25065612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.