These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Analysis of Capillary Flow in a Parallel Microchannel-Based Wick Structure with Circular and Noncircular Geometries. Ma B Langmuir; 2020 Nov; 36(45):13485-13497. PubMed ID: 33151083 [TBL] [Abstract][Full Text] [Related]
24. Capillary rise between planar surfaces. Bullard JW; Garboczi EJ Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011604. PubMed ID: 19257042 [TBL] [Abstract][Full Text] [Related]
25. Capillary Rise in Granitic Rocks: Interpretation of Kinetics on the Basis of Pore Structure. Mosquera MJ; Rivas T; Prieto B; Silva B J Colloid Interface Sci; 2000 Feb; 222(1):41-45. PubMed ID: 10655122 [TBL] [Abstract][Full Text] [Related]
26. Experimental investigation of dynamic contact angle and capillary rise in tubes with circular and noncircular cross sections. Heshmati M; Piri M Langmuir; 2014 Dec; 30(47):14151-62. PubMed ID: 25323811 [TBL] [Abstract][Full Text] [Related]
27. Determination of contact angles on microporous particles using the thin-layer wicking technique. Cui ZG; Binks BP; Clint JH Langmuir; 2005 Aug; 21(18):8319-25. PubMed ID: 16114937 [TBL] [Abstract][Full Text] [Related]
28. Optimal design of porous structures for the fastest liquid absorption. Shou D; Ye L; Fan J; Fu K Langmuir; 2014 Jan; 30(1):149-55. PubMed ID: 24325355 [TBL] [Abstract][Full Text] [Related]
29. Trapped liquid drop at the end of capillary. Wang Z; Yen HY; Chang CC; Sheng YJ; Tsao HK Langmuir; 2013 Oct; 29(39):12154-61. PubMed ID: 24004041 [TBL] [Abstract][Full Text] [Related]
30. Evaporation Limited Radial Capillary Penetration in Porous Media. Liu M; Wu J; Gan Y; Hanaor DA; Chen CQ Langmuir; 2016 Sep; 32(38):9899-904. PubMed ID: 27583455 [TBL] [Abstract][Full Text] [Related]
31. Confinement Correction to Mercury Intrusion Capillary Pressure of Shale Nanopores. Wang S; Javadpour F; Feng Q Sci Rep; 2016 Feb; 6():20160. PubMed ID: 26832445 [TBL] [Abstract][Full Text] [Related]
32. Physiological studies of macromolecular transport across capillary walls. Studies on continuous capillaries in rat skeletal muscle. Haraldsson B Acta Physiol Scand Suppl; 1986; 553():1-40. PubMed ID: 3466511 [TBL] [Abstract][Full Text] [Related]
33. Measurement of off-diagonal transport coefficients in two-phase flow in porous media. Ramakrishnan TS; Goode PA J Colloid Interface Sci; 2015 Jul; 449():392-8. PubMed ID: 25748636 [TBL] [Abstract][Full Text] [Related]
34. Effects of intermediate wettability on entry capillary pressure in angular pores. Rabbani HS; Joekar-Niasar V; Shokri N J Colloid Interface Sci; 2016 Jul; 473():34-43. PubMed ID: 27042823 [TBL] [Abstract][Full Text] [Related]
38. Determination of the wettability of powders by the Washburn capillary rise method with bed preparation by a centrifugal packing technique. Galet L; Patry S; Dodds J J Colloid Interface Sci; 2010 Jun; 346(2):470-5. PubMed ID: 20362998 [TBL] [Abstract][Full Text] [Related]
39. Three-phase threshold capillary pressures in noncircular capillary tubes with different wettabilities including contact angle hysteresis. Piri M; Blunt MJ Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061603. PubMed ID: 15697377 [TBL] [Abstract][Full Text] [Related]
40. Capillary rise dynamics of aqueous glycerol solutions in glass capillaries: a critical examination of the Washburn equation. O'Loughlin M; Wilk K; Priest C; Ralston J; Popescu MN J Colloid Interface Sci; 2013 Dec; 411():257-64. PubMed ID: 24041546 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]