These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 26538500)

  • 21. Understanding the functional roles of amino acid residues in enzyme catalysis.
    Holliday GL; Mitchell JB; Thornton JM
    J Mol Biol; 2009 Jul; 390(3):560-77. PubMed ID: 19447117
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional analysis of Rossmann-like domains reveals convergent evolution of topology and reaction pathways.
    Medvedev KE; Kinch LN; Schaeffer RD; Grishin NV
    PLoS Comput Biol; 2019 Dec; 15(12):e1007569. PubMed ID: 31869345
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resolving protein structure-function-binding site relationships from a binding site similarity network perspective.
    Mudgal R; Srinivasan N; Chandra N
    Proteins; 2017 Jul; 85(7):1319-1335. PubMed ID: 28342236
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of active sites of enzymes by maximum relevance minimum redundancy (mRMR) feature selection.
    Gao YF; Li BQ; Cai YD; Feng KY; Li ZD; Jiang Y
    Mol Biosyst; 2013 Jan; 9(1):61-9. PubMed ID: 23117653
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of subfamily-specific sites based on active sites modeling and clustering.
    de Melo-Minardi RC; Bastard K; Artiguenave F
    Bioinformatics; 2010 Dec; 26(24):3075-82. PubMed ID: 20980272
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting and annotating catalytic residues: an information theoretic approach.
    Sterner B; Singh R; Berger B
    J Comput Biol; 2007 Oct; 14(8):1058-73. PubMed ID: 17887954
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular and structural basis of drift in the functions of closely-related homologous enzyme domains: implications for function annotation based on homology searches and structural genomics.
    Roy A; Srinivasan N; Gowri VS
    In Silico Biol; 2009; 9(1-2):S41-55. PubMed ID: 19537164
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sequence-based enzyme catalytic domain prediction using clustering and aggregated mutual information content.
    Choi K; Kim S
    J Bioinform Comput Biol; 2011 Oct; 9(5):597-611. PubMed ID: 21976378
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Networks of high mutual information define the structural proximity of catalytic sites: implications for catalytic residue identification.
    Marino Buslje C; Teppa E; Di Doménico T; Delfino JM; Nielsen M
    PLoS Comput Biol; 2010 Nov; 6(11):e1000978. PubMed ID: 21079665
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Large-Scale Analysis Exploring Evolution of Catalytic Machineries and Mechanisms in Enzyme Superfamilies.
    Furnham N; Dawson NL; Rahman SA; Thornton JM; Orengo CA
    J Mol Biol; 2016 Jan; 428(2 Pt A):253-267. PubMed ID: 26585402
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of enzyme function based on 3D templates of evolutionarily important amino acids.
    Kristensen DM; Ward RM; Lisewski AM; Erdin S; Chen BY; Fofanov VY; Kimmel M; Kavraki LE; Lichtarge O
    BMC Bioinformatics; 2008 Jan; 9():17. PubMed ID: 18190718
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CMASA: an accurate algorithm for detecting local protein structural similarity and its application to enzyme catalytic site annotation.
    Li GH; Huang JF
    BMC Bioinformatics; 2010 Aug; 11():439. PubMed ID: 20796320
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In silico discovery of enzyme-substrate specificity-determining residue clusters.
    Yu GX; Park BH; Chandramohan P; Munavalli R; Geist A; Samatova NF
    J Mol Biol; 2005 Oct; 352(5):1105-17. PubMed ID: 16140329
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combining structure and sequence information allows automated prediction of substrate specificities within enzyme families.
    Röttig M; Rausch C; Kohlbacher O
    PLoS Comput Biol; 2010 Jan; 6(1):e1000636. PubMed ID: 20072606
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A homology model of restriction endonuclease SfiI in complex with DNA.
    Chmiel AA; Bujnicki JM; Skowronek KJ
    BMC Struct Biol; 2005 Jan; 5():2. PubMed ID: 15667656
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Discarding functional residues from the substitution table improves predictions of active sites within three-dimensional structures.
    Gong S; Blundell TL
    PLoS Comput Biol; 2008 Oct; 4(10):e1000179. PubMed ID: 18833291
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The chemistry of protein catalysis.
    Holliday GL; Almonacid DE; Mitchell JB; Thornton JM
    J Mol Biol; 2007 Oct; 372(5):1261-77. PubMed ID: 17727879
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PRECISE: a Database of Predicted and Consensus Interaction Sites in Enzymes.
    Sheu SH; Lancia DR; Clodfelter KH; Landon MR; Vajda S
    Nucleic Acids Res; 2005 Jan; 33(Database issue):D206-11. PubMed ID: 15608178
    [TBL] [Abstract][Full Text] [Related]  

  • 39. EzCatDB: the Enzyme Catalytic-mechanism Database.
    Nagano N
    Nucleic Acids Res; 2005 Jan; 33(Database issue):D407-12. PubMed ID: 15608227
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Catalytic Site Atlas 2.0: cataloging catalytic sites and residues identified in enzymes.
    Furnham N; Holliday GL; de Beer TA; Jacobsen JO; Pearson WR; Thornton JM
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D485-9. PubMed ID: 24319146
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.