BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26538601)

  • 1. Re-evaluating the kinetics of ATP hydrolysis during initiation of DNA sliding by Type III restriction enzymes.
    Tóth J; Bollins J; Szczelkun MD
    Nucleic Acids Res; 2015 Dec; 43(22):10870-81. PubMed ID: 26538601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociation from DNA of Type III Restriction-Modification enzymes during helicase-dependent motion and following endonuclease activity.
    Tóth J; van Aelst K; Salmons H; Szczelkun MD
    Nucleic Acids Res; 2012 Aug; 40(14):6752-64. PubMed ID: 22523084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The helicase-like domains of type III restriction enzymes trigger long-range diffusion along DNA.
    Schwarz FW; Tóth J; van Aelst K; Cui G; Clausing S; Szczelkun MD; Seidel R
    Science; 2013 Apr; 340(6130):353-6. PubMed ID: 23599494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short-range translocation by a restriction enzyme motor triggers diffusion along DNA.
    Göse M; Magill EE; Hughes-Games A; Shaw SJ; Diffin FM; Rawson T; Nagy Z; Seidel R; Szczelkun MD
    Nat Chem Biol; 2024 Jun; 20(6):689-698. PubMed ID: 38167920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations in the Res subunit of the EcoPI restriction enzyme that affect ATP-dependent reactions.
    Saha S; Rao DN
    J Mol Biol; 1997 Jun; 269(3):342-54. PubMed ID: 9199404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA cleavage by type III restriction-modification enzyme EcoP15I is independent of spacer distance between two head to head oriented recognition sites.
    Mücke M; Reich S; Möncke-Buchner E; Reuter M; Krüger DH
    J Mol Biol; 2001 Sep; 312(4):687-98. PubMed ID: 11575924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-site DNA cleavage by Type III restriction endonuclease requires a site-bound enzyme and a trans-acting enzyme that are ATPase-activated.
    Ahmad I; Kulkarni M; Gopinath A; Saikrishnan K
    Nucleic Acids Res; 2018 Jul; 46(12):6229-6237. PubMed ID: 29846668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scanning force microscopy of DNA translocation by the Type III restriction enzyme EcoP15I.
    Reich S; Gössl I; Reuter M; Rabe JP; Krüger DH
    J Mol Biol; 2004 Aug; 341(2):337-43. PubMed ID: 15276827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subunit assembly and mode of DNA cleavage of the type III restriction endonucleases EcoP1I and EcoP15I.
    Janscak P; Sandmeier U; Szczelkun MD; Bickle TA
    J Mol Biol; 2001 Feb; 306(3):417-31. PubMed ID: 11178902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP hydrolysis is required for DNA cleavage by EcoPI restriction enzyme.
    Saha S; Rao DN
    J Mol Biol; 1995 Apr; 247(4):559-67. PubMed ID: 7723013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translocation, switching and gating: potential roles for ATP in long-range communication on DNA by Type III restriction endonucleases.
    Szczelkun MD
    Biochem Soc Trans; 2011 Apr; 39(2):589-94. PubMed ID: 21428945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How to proteins move along DNA? Lessons from type-I and type-III restriction endonucleases.
    Szczelkun MD
    Essays Biochem; 2000; 35():131-43. PubMed ID: 12471895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maintaining a sense of direction during long-range communication on DNA.
    Szczelkun MD; Friedhoff P; Seidel R
    Biochem Soc Trans; 2010 Apr; 38(2):404-9. PubMed ID: 20298192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional analysis of conserved motifs in type III restriction-modification enzymes.
    Saha S; Ahmad I; Reddy YV; Krishnamurthy V; Rao DN
    Biol Chem; 1998; 379(4-5):511-7. PubMed ID: 9628345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Type III restriction endonucleases translocate DNA in a reaction driven by recognition site-specific ATP hydrolysis.
    Meisel A; Mackeldanz P; Bickle TA; Krüger DH; Schroeder C
    EMBO J; 1995 Jun; 14(12):2958-66. PubMed ID: 7796821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Type III restriction enzymes communicate in 1D without looping between their target sites.
    Ramanathan SP; van Aelst K; Sears A; Peakman LJ; Diffin FM; Szczelkun MD; Seidel R
    Proc Natl Acad Sci U S A; 2009 Feb; 106(6):1748-53. PubMed ID: 19181848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The type I restriction endonuclease EcoR124I, couples ATP hydrolysis to bidirectional DNA translocation.
    Bianco PR; Hurley EM
    J Mol Biol; 2005 Sep; 352(4):837-59. PubMed ID: 16126220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA cleavage site selection by Type III restriction enzymes provides evidence for head-on protein collisions following 1D bidirectional motion.
    Schwarz FW; van Aelst K; Tóth J; Seidel R; Szczelkun MD
    Nucleic Acids Res; 2011 Oct; 39(18):8042-51. PubMed ID: 21724613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple-step kinetic mechanism of DNA-independent ATP binding and hydrolysis by Escherichia coli replicative helicase DnaB protein: quantitative analysis using the rapid quench-flow method.
    Rajendran S; Jezewska MJ; Bujalowski W
    J Mol Biol; 2000 Nov; 303(5):773-95. PubMed ID: 11061975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The kinetic mechanism of formation of the bacteriophage T4 DNA polymerase sliding clamp.
    Young MC; Weitzel SE; von Hippel PH
    J Mol Biol; 1996 Dec; 264(3):440-52. PubMed ID: 8969296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.