These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 26538658)

  • 101. "Scene" from inside: The representation of Observer's space in high-level visual cortex.
    Chaisilprungraung T; Park S
    Neuropsychologia; 2021 Oct; 161():108010. PubMed ID: 34454940
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Human-Object Interactions Are More than the Sum of Their Parts.
    Baldassano C; Beck DM; Fei-Fei L
    Cereb Cortex; 2017 Mar; 27(3):2276-2288. PubMed ID: 27073216
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Perception of Impossible Scenes Reveals Differential Hippocampal and Parahippocampal Place Area Contributions to Spatial Coherency.
    Douglas D; Thavabalasingam S; Chorghay Z; O'Neil EB; Barense MD; Lee AC
    Hippocampus; 2017 Jan; 27(1):61-76. PubMed ID: 27770465
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Encoding and retrieving faces and places: distinguishing process- and stimulus-specific differences in brain activity.
    Prince SE; Dennis NA; Cabeza R
    Neuropsychologia; 2009 Sep; 47(11):2282-9. PubMed ID: 19524092
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Coarse-to-fine categorization of visual scenes in scene-selective cortex.
    Musel B; Kauffmann L; Ramanoël S; Giavarini C; Guyader N; Chauvin A; Peyrin C
    J Cogn Neurosci; 2014 Oct; 26(10):2287-97. PubMed ID: 24738768
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Direct and indirect parieto-medial temporal pathways for spatial navigation in humans: evidence from resting-state functional connectivity.
    Boccia M; Sulpizio V; Nemmi F; Guariglia C; Galati G
    Brain Struct Funct; 2017 May; 222(4):1945-1957. PubMed ID: 27704218
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Late Development of Navigationally Relevant Motion Processing in the Occipital Place Area.
    Kamps FS; Pincus JE; Radwan SF; Wahab S; Dilks DD
    Curr Biol; 2020 Feb; 30(3):544-550.e3. PubMed ID: 31956027
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Early Electrophysiological Markers of Navigational Affordances in Scenes.
    Harel A; Nador JD; Bonner MF; Epstein RA
    J Cogn Neurosci; 2022 Feb; 34(3):397-410. PubMed ID: 35015877
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Modality-independent coding of spatial layout in the human brain.
    Wolbers T; Klatzky RL; Loomis JM; Wutte MG; Giudice NA
    Curr Biol; 2011 Jun; 21(11):984-9. PubMed ID: 21620708
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Repetition Suppression Reveals Cue-Specific Spatial Representations for Landmarks and Self-Motion Cues in the Human Retrosplenial Cortex.
    Chen X; Wei Z; Wolbers T
    eNeuro; 2024 Apr; 11(4):. PubMed ID: 38519127
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Defining the most probable location of the parahippocampal place area using cortex-based alignment and cross-validation.
    Weiner KS; Barnett MA; Witthoft N; Golarai G; Stigliani A; Kay KN; Gomez J; Natu VS; Amunts K; Zilles K; Grill-Spector K
    Neuroimage; 2018 Apr; 170():373-384. PubMed ID: 28435097
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Task-related connectivity of decision points during spatial navigation in a schematic map.
    Qi Q; Weng Y; Zheng S; Wang S; Liu S; Huang Q; Huang R
    Brain Struct Funct; 2022 Jun; 227(5):1697-1710. PubMed ID: 35194657
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Representation of navigational affordances and ego-motion in the occipital place area.
    Kamps FS; Chen EM; Kanwisher N; Saxe R
    bioRxiv; 2024 May; ():. PubMed ID: 38746251
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Differential connectivity within the Parahippocampal Place Area.
    Baldassano C; Beck DM; Fei-Fei L
    Neuroimage; 2013 Jul; 75():228-237. PubMed ID: 23507385
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Affective scenes influence fear perception of individual body expressions.
    Van den Stock J; Vandenbulcke M; Sinke CB; de Gelder B
    Hum Brain Mapp; 2014 Feb; 35(2):492-502. PubMed ID: 23097235
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Have you been there before? Decoding recognition of spatial scenes from fMRI signals in precuneus.
    Bogler C; Zangrossi A; Miller C; Sartori G; Haynes JD
    Hum Brain Mapp; 2024 May; 45(7):e26690. PubMed ID: 38703117
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Three cortical scene systems and their development.
    Dilks DD; Kamps FS; Persichetti AS
    Trends Cogn Sci; 2022 Feb; 26(2):117-127. PubMed ID: 34857468
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Two scene navigation systems dissociated by deliberate versus automatic processing.
    Suzuki S; Kamps FS; Dilks DD; Treadway MT
    Cortex; 2021 Jul; 140():199-209. PubMed ID: 33992908
    [TBL] [Abstract][Full Text] [Related]  

  • 119. The spontaneous location recognition task for assessing spatial pattern separation and memory across a delay in rats and mice.
    Reichelt AC; Kramar CP; Ghosh-Swaby OR; Sheppard PAS; Kent BA; Bekinschtein P; Saksida LM; Bussey TJ
    Nat Protoc; 2021 Dec; 16(12):5616-5633. PubMed ID: 34741153
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Selective neural coding of object, feature, and geometry spatial cues in humans.
    Ramanoël S; Durteste M; Bizeul A; Ozier-Lafontaine A; Bécu M; Sahel JA; Habas C; Arleo A
    Hum Brain Mapp; 2022 Dec; 43(17):5281-5295. PubMed ID: 35776524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.