These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 26539046)

  • 21. Enzymatic saccharification of biologically pretreated Pinus densiflora using enzymes from brown rot fungi.
    Lee JW; Kim HY; Koo BW; Choi DH; Kwon M; Choi IG
    J Biosci Bioeng; 2008 Aug; 106(2):162-7. PubMed ID: 18804059
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Harnessing the potential of white rot fungi and ligninolytic enzymes for efficient textile dye degradation: A comprehensive review.
    Kumar V; Pallavi P; Sen SK; Raut S
    Water Environ Res; 2024 Jan; 96(1):e10959. PubMed ID: 38204323
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Degradation of bisphenol A by white rot fungi, Stereum hirsutum and Heterobasidium insulare, and reduction of its estrogenic activity.
    Lee SM; Koo BW; Choi JW; Choi DH; An BS; Jeung EB; Choi IG
    Biol Pharm Bull; 2005 Feb; 28(2):201-7. PubMed ID: 15684469
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ligninolytic behavior of the white-rot fungus
    Shanthi Kumari BS; Praveen K; Usha KY; Dileep Kumar K; Praveen Kumar Reddy G; Rajasekhar Reddy B
    3 Biotech; 2019 Nov; 9(11):424. PubMed ID: 31696029
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The ratio and concentration of two monoterpenes mediate fecundity of the pinewood nematode and growth of its associated fungi.
    Niu H; Zhao L; Lu M; Zhang S; Sun J
    PLoS One; 2012; 7(2):e31716. PubMed ID: 22363713
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ligninolytic fungal laccases and their biotechnological applications.
    Singh Arora D; Kumar Sharma R
    Appl Biochem Biotechnol; 2010 Mar; 160(6):1760-88. PubMed ID: 19513857
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biodegradation of methoxychlor and its metabolites by the white rot fungus Stereum hirsutum related to the inactivation of estrogenic activity.
    Lee SM; Lee JW; Park KR; Hong EJ; Jeung EB; Kim MK; Kang HY; Choi IG
    J Environ Sci Health B; 2006; 41(4):385-97. PubMed ID: 16753958
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Terpenoids biotransformation in mammals III: Biotransformation of alpha-pinene, beta-pinene, pinane, 3-carene, carane, myrcene, and p-cymene in rabbits.
    Ishida T; Asakawa Y; Takemoto T; Aratani T
    J Pharm Sci; 1981 Apr; 70(4):406-15. PubMed ID: 7229954
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lignin-Degrading Abilities of Novel Autochthonous Fungal
Isolates
    Jović J; Buntić A; Radovanović N; Petrović B; Mojović L
    Food Technol Biotechnol; 2018 Sep; 56(3):354-365. PubMed ID: 30510479
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Utilization of oil palm decanter cake for valuable laccase and manganese peroxidase enzyme production from a novel white-rot fungus,
    Thamvithayakorn P; Phosri C; Pisutpaisal N; Krajangsang S; Whalley AJS; Suwannasai N
    3 Biotech; 2019 Nov; 9(11):417. PubMed ID: 31696022
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elucidating the role of media nitrogen in augmenting the production of lignin-depolymerizing enzymes by white-rot fungi.
    Pradeep Kumar V; Sridhar M; Ashis Kumar S; Bhatta R
    Microbiol Spectr; 2023 Sep; 11(5):e0141923. PubMed ID: 37655898
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microsomal transformation of organophosphorus pesticides by white rot fungi.
    Jauregui J; Valderrama B; Albores A; Vazquez-Duhalt R
    Biodegradation; 2003 Dec; 14(6):397-406. PubMed ID: 14669870
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The capacity for thermal protection of photosynthetic electron transport varies for different monoterpenes in Quercus ilex.
    Copolovici LO; Filella I; Llusià J; Niinemets U; Peñuelas J
    Plant Physiol; 2005 Sep; 139(1):485-96. PubMed ID: 16126854
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biotransformation of (-)-a-pinene by Botrytis cinerea.
    Farooq A; Tahara S; Choudhary MI; Atta-ur-Rahman ; Ahmed Z; Hüsnü CB; Demirci F
    Z Naturforsch C J Biosci; 2002; 57(3-4):303-6. PubMed ID: 12064731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of biotransformation in flavor and fragrance industry.
    Kashi FJ; Fooladi J; Bayat M
    Pak J Biol Sci; 2007 May; 10(10):1685-90. PubMed ID: 19086518
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of
    Benavides V; Pinto-Ibieta F; Serrano A; Rubilar O; Ciudad G
    Foods; 2022 May; 11(11):. PubMed ID: 35681337
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pinene cyclases I and II. Two enzymes from sage (Salvia officinalis) which catalyze stereospecific cyclizations of geranyl pyrophosphate to monoterpene olefins of opposite configuration.
    Gambliel H; Croteau R
    J Biol Chem; 1984 Jan; 259(2):740-8. PubMed ID: 6693393
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transformation of 2,4,6-trichlorophenol by the white rot fungi Panus tigrinus and Coriolus versicolor.
    Leontievsky AA; Myasoedova NM; Baskunov BP; Evans CS; Golovleva LA
    Biodegradation; 2000; 11(5):331-40. PubMed ID: 11487063
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Elimination and detoxification of softwood extractives by white-rot fungi.
    Dorado J; Claassen FW; van Beek TA; Lenon G; Wijnberg JB; Sierra-Alvarez R
    J Biotechnol; 2000 Jul; 80(3):231-40. PubMed ID: 10949313
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monoterpene biosynthesis: isotope effects associated with bicyclic olefin formation catalyzed by pinene synthases from sage (Salvia officinalis).
    Wagschal KC; Pyun HJ; Coates RM; Croteau R
    Arch Biochem Biophys; 1994 Feb; 308(2):477-87. PubMed ID: 8109978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.