These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 26539089)

  • 1. A subject-independent pattern-based Brain-Computer Interface.
    Ray AM; Sitaram R; Rana M; Pasqualotto E; Buyukturkoglu K; Guan C; Ang KK; Tejos C; Zamorano F; Aboitiz F; Birbaumer N; Ruiz S
    Front Behav Neurosci; 2015; 9():269. PubMed ID: 26539089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-Time Subject-Independent Pattern Classification of Overt and Covert Movements from fNIRS Signals.
    Robinson N; Zaidi AD; Rana M; Prasad VA; Guan C; Birbaumer N; Sitaram R
    PLoS One; 2016; 11(7):e0159959. PubMed ID: 27467528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurofeedback-based motor imagery training for brain-computer interface (BCI).
    Hwang HJ; Kwon K; Im CH
    J Neurosci Methods; 2009 Apr; 179(1):150-6. PubMed ID: 19428521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A real-time fMRI neurofeedback system for the clinical alleviation of depression with a subject-independent classification of brain states: A proof of principle study.
    Pereira JA; Ray A; Rana M; Silva C; Salinas C; Zamorano F; Irani M; Opazo P; Sitaram R; Ruiz S
    Front Hum Neurosci; 2022; 16():933559. PubMed ID: 36092645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time EEG feedback during simultaneous EEG-fMRI identifies the cortical signature of motor imagery.
    Zich C; Debener S; Kranczioch C; Bleichner MG; Gutberlet I; De Vos M
    Neuroimage; 2015 Jul; 114():438-47. PubMed ID: 25887263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Across-subject offline decoding of motor imagery from MEG and EEG.
    Halme HL; Parkkonen L
    Sci Rep; 2018 Jul; 8(1):10087. PubMed ID: 29973645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching.
    Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G
    J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing sensorimotor BCI performance with assistive afferent activity: An online evaluation.
    Vidaurre C; Ramos Murguialday A; Haufe S; Gómez M; Müller KR; Nikulin VV
    Neuroimage; 2019 Oct; 199():375-386. PubMed ID: 31158476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A BCI based visual-haptic neurofeedback training improves cortical activations and classification performance during motor imagery.
    Wang Z; Zhou Y; Chen L; Gu B; Liu S; Xu M; Qi H; He F; Ming D
    J Neural Eng; 2019 Oct; 16(6):066012. PubMed ID: 31365911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Comparison between BCI Simulation and Neurofeedback for Forward/Backward Navigation in Virtual Reality.
    Alchalabi B; Faubert J
    Comput Intell Neurosci; 2019; 2019():2503431. PubMed ID: 31687005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An online EEG-based brain-computer interface for controlling hand grasp using an adaptive probabilistic neural network.
    Hazrati MKh; Erfanian A
    Med Eng Phys; 2010 Sep; 32(7):730-9. PubMed ID: 20510641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time EEG analysis with subject-specific spatial patterns for a brain-computer interface (BCI).
    Guger C; Ramoser H; Pfurtscheller G
    IEEE Trans Rehabil Eng; 2000 Dec; 8(4):447-56. PubMed ID: 11204035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the effects of visual distractors on the performance of a motor imagery brain-computer interface.
    Emami Z; Chau T
    Clin Neurophysiol; 2018 Jun; 129(6):1268-1275. PubMed ID: 29677690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asynchronous BCI based on motor imagery with automated calibration and neurofeedback training.
    Kus R; Valbuena D; Zygierewicz J; Malechka T; Graeser A; Durka P
    IEEE Trans Neural Syst Rehabil Eng; 2012 Nov; 20(6):823-35. PubMed ID: 23033330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lateralization patterns of covert but not overt movements change with age: An EEG neurofeedback study.
    Zich C; Debener S; De Vos M; Frerichs S; Maurer S; Kranczioch C
    Neuroimage; 2015 Aug; 116():80-91. PubMed ID: 25979668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A toolbox for real-time subject-independent and subject-dependent classification of brain states from fMRI signals.
    Rana M; Gupta N; Dalboni Da Rocha JL; Lee S; Sitaram R
    Front Neurosci; 2013; 7():170. PubMed ID: 24151454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feature extraction of four-class motor imagery EEG signals based on functional brain network.
    Ai Q; Chen A; Chen K; Liu Q; Zhou T; Xin S; Ji Z
    J Neural Eng; 2019 Apr; 16(2):026032. PubMed ID: 30699389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-trial classification of feedback potentials within neurofeedback training with an EEG brain-computer interface.
    López-Larraz E; Iterate I; Escolano C; García I; Montesano L; Minguez J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4596-9. PubMed ID: 22255361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Comprehensive sLORETA Study on the Contribution of Cortical Somatomotor Regions to Motor Imagery.
    Yazici M; Ulutas M; Okuyan M
    Brain Sci; 2019 Dec; 9(12):. PubMed ID: 31847114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Classification of Motor Imagery Electroencephalography Signals Using Deep Learning Methods.
    Majidov I; Whangbo T
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30978978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.