These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 26539486)
1. Drift of Scroll Wave Filaments in an Anisotropic Model of the Left Ventricle of the Human Heart. Pravdin S; Dierckx H; Markhasin VS; Panfilov AV Biomed Res Int; 2015; 2015():389830. PubMed ID: 26539486 [TBL] [Abstract][Full Text] [Related]
2. Negative tension of scroll wave filaments and turbulence in three-dimensional excitable media and application in cardiac dynamics. Alonso S; Bär M; Panfilov AV Bull Math Biol; 2013 Aug; 75(8):1351-76. PubMed ID: 22829178 [TBL] [Abstract][Full Text] [Related]
3. Scroll wave with negative filament tension in a model of the left ventricle of the human heart and its overdrive pacing. Pravdin SF; Epanchintsev TI; Dierckx H; Panfilov AV Phys Rev E; 2021 Sep; 104(3-1):034408. PubMed ID: 34654159 [TBL] [Abstract][Full Text] [Related]
4. Negative filament tension in the Luo-Rudy model of cardiac tissue. Alonso S; Panfilov AV Chaos; 2007 Mar; 17(1):015102. PubMed ID: 17411259 [TBL] [Abstract][Full Text] [Related]
5. High-frequency pacing of scroll waves in a three-dimensional slab model of cardiac tissue. Pravdin SF; Nezlobinsky TV; Panfilov AV; Dierckx H Phys Rev E; 2021 Apr; 103(4-1):042420. PubMed ID: 34005903 [TBL] [Abstract][Full Text] [Related]
6. Numerical study of the drift of scroll waves by optical feedback in cardiac tissue. Xia YX; Xie LH; He YJ; Pan JT; Panfilov AV; Zhang H Phys Rev E; 2023 Dec; 108(6-1):064406. PubMed ID: 38243456 [TBL] [Abstract][Full Text] [Related]
7. Eikonal formulation of the minimal principle for scroll wave filaments. ten Tusscher KH; Panfilov AV Phys Rev Lett; 2004 Sep; 93(10):108106. PubMed ID: 15447458 [TBL] [Abstract][Full Text] [Related]
8. Evidence of three-dimensional scroll waves with ribbon-shaped filament as a mechanism of ventricular tachycardia in the isolated rabbit heart. Efimov IR; Sidorov V; Cheng Y; Wollenzier B J Cardiovasc Electrophysiol; 1999 Nov; 10(11):1452-62. PubMed ID: 10571365 [TBL] [Abstract][Full Text] [Related]
9. Breakthrough waves during ventricular fibrillation depend on the degree of rotational anisotropy and the boundary conditions: a simulation study. Ashihara T; Namba T; Ikeda T; Ito M; Kinoshita M; Nakazawa K J Cardiovasc Electrophysiol; 2001 Mar; 12(3):312-22. PubMed ID: 11291805 [TBL] [Abstract][Full Text] [Related]
10. Electrical wave propagation in an anisotropic model of the left ventricle based on analytical description of cardiac architecture. Pravdin SF; Dierckx H; Katsnelson LB; Solovyova O; Markhasin VS; Panfilov AV PLoS One; 2014; 9(5):e93617. PubMed ID: 24817308 [TBL] [Abstract][Full Text] [Related]
11. Topological charge-density-vector method of identifying filaments of scroll waves. He YJ; Xia YX; Mei JT; Zhou K; Jiang C; Pan JT; Zheng D; Zheng B; Zhang H Phys Rev E; 2023 Jan; 107(1-1):014217. PubMed ID: 36797968 [TBL] [Abstract][Full Text] [Related]
12. Negative filament tension at high excitability in a model of cardiac tissue. Alonso S; Panfilov AV Phys Rev Lett; 2008 May; 100(21):218101. PubMed ID: 18518639 [TBL] [Abstract][Full Text] [Related]
13. Reconstruction of three-dimensional scroll waves in excitable media from two-dimensional observations using deep neural networks. Lebert J; Mittal M; Christoph J Phys Rev E; 2023 Jan; 107(1-1):014221. PubMed ID: 36797900 [TBL] [Abstract][Full Text] [Related]
15. Refraction of scroll-wave filaments at the boundary between two reaction-diffusion media. Zemlin CW; Varghese F; Wellner M; Pertsov AM Phys Rev Lett; 2015 Mar; 114(11):118303. PubMed ID: 25839316 [TBL] [Abstract][Full Text] [Related]
16. Electromechanical vortex filaments during cardiac fibrillation. Christoph J; Chebbok M; Richter C; Schröder-Schetelig J; Bittihn P; Stein S; Uzelac I; Fenton FH; Hasenfuß G; Gilmour RF; Luther S Nature; 2018 Mar; 555(7698):667-672. PubMed ID: 29466325 [TBL] [Abstract][Full Text] [Related]
17. Scroll-wave dynamics in human cardiac tissue: lessons from a mathematical model with inhomogeneities and fiber architecture. Majumder R; Nayak AR; Pandit R PLoS One; 2011 Apr; 6(4):e18052. PubMed ID: 21483682 [TBL] [Abstract][Full Text] [Related]
18. Dynamics of intramural scroll waves in three-dimensional continuous myocardium with rotational anisotropy. Berenfeld O; Pertsov AM J Theor Biol; 1999 Aug; 199(4):383-94. PubMed ID: 10441456 [TBL] [Abstract][Full Text] [Related]
19. [The study of autowave mechanisms of electrocardiogram variability during high frequency arrhythmias: mathematical modeling data]. Medvinskiĭ AB; Rusakov AV; Moskalenko AV; Fedorov MV; Panfilov AV Biofizika; 2003; 48(2):314-23. PubMed ID: 12723358 [TBL] [Abstract][Full Text] [Related]
20. Expanding scroll rings and negative tension turbulence in a model of excitable media. Alonso S; Kähler R; Mikhailov AS; Sagués F Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056201. PubMed ID: 15600722 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]