BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

569 related articles for article (PubMed ID: 26539788)

  • 21. The impact of an intervention to improve intrapartum maternal vital sign monitoring and reduce alarm fatigue.
    Kern-Goldberger AR; Nicholls EM; Plastino N; Srinivas SK
    Am J Obstet Gynecol MFM; 2023 May; 5(5):100893. PubMed ID: 36781120
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Model of Clinical Alarm Errors in Hospital.
    Busch-Vishniac I
    Biomed Instrum Technol; 2015; 49(4):280-91. PubMed ID: 26196919
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Joint commission warns of alarm fatigue: multitude of alarms from monitoring devices problematic.
    Mitka M
    JAMA; 2013 Jun; 309(22):2315-6. PubMed ID: 23757063
    [No Abstract]   [Full Text] [Related]  

  • 24. Balancing the Tension Between Hyperoxia Prevention and Alarm Fatigue in the NICU.
    Ketko AK; Martin CM; Nemshak MA; Niedner M; Vartanian RJ
    Pediatrics; 2015 Aug; 136(2):e496-504. PubMed ID: 26148949
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stop the Noise: A Quality Improvement Project to Decrease Electrocardiographic Nuisance Alarms.
    Sendelbach S; Wahl S; Anthony A; Shotts P
    Crit Care Nurse; 2015 Aug; 35(4):15-22; quiz 1p following 22. PubMed ID: 26232798
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Customizing Physiologic Alarms in the Emergency Department: A Regression Discontinuity, Quality Improvement Study.
    Fujita LY; Choi SY
    J Emerg Nurs; 2020 Mar; 46(2):188-198.e2. PubMed ID: 31864768
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effectiveness of nurse education and training for clinical alarm response and management: a systematic review.
    Yue L; Plummer V; Cross W
    J Clin Nurs; 2017 Sep; 26(17-18):2511-2526. PubMed ID: 27685951
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of Alarm Fatigue on the Work of Nurses in an Intensive Care Environment-A Systematic Review.
    Lewandowska K; Weisbrot M; Cieloszyk A; Mędrzycka-Dąbrowska W; Krupa S; Ozga D
    Int J Environ Res Public Health; 2020 Nov; 17(22):. PubMed ID: 33202907
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel approach to cardiac alarm management on telemetry units.
    Whalen DA; Covelle PM; Piepenbrink JC; Villanova KL; Cuneo CL; Awtry EH
    J Cardiovasc Nurs; 2014; 29(5):E13-22. PubMed ID: 24365870
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of bundle set interventions on physiologic alarms and alarm fatigue in an intensive care unit: A quality improvement project.
    Seifert M; Tola DH; Thompson J; McGugan L; Smallheer B
    Intensive Crit Care Nurs; 2021 Dec; 67():103098. PubMed ID: 34393010
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reducing medical device alarms by an order of magnitude: A human factors approach.
    Koomen E; Webster CS; Konrad D; van der Hoeven JG; Best T; Kesecioglu J; Gommers DA; de Vries WB; Kappen TH
    Anaesth Intensive Care; 2021 Jan; 49(1):52-61. PubMed ID: 33530699
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Types and Frequency of Infusion Pump Alarms and Infusion-Interruption to Infusion-Recovery Times for Critical Short Half-Life Infusions: Retrospective Data Analysis.
    Waterson J; Bedner A
    JMIR Hum Factors; 2019 Aug; 6(3):e14123. PubMed ID: 31407667
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polish Adaptation of the
    Rypicz Ł; Rozensztrauch A; Fedorowicz O; Włodarczyk A; Zatońska K; Juárez-Vela R; Witczak I
    Int J Environ Res Public Health; 2023 Jan; 20(3):. PubMed ID: 36767101
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Testing physiologic monitor alarm customization software to reduce alarm rates and improve nurses' experience of alarms in a medical intensive care unit.
    Ruppel H; De Vaux L; Cooper D; Kunz S; Duller B; Funk M
    PLoS One; 2018; 13(10):e0205901. PubMed ID: 30335824
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of pagers with an alarm escalation system to reduce cardiac monitor alarm signals.
    Cvach MM; Frank RJ; Doyle P; Stevens ZK
    J Nurs Care Qual; 2014; 29(1):9-18. PubMed ID: 23963169
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Artificial Intelligence Technologies for Coping with Alarm Fatigue in Hospital Environments Because of Sensory Overload: Algorithm Development and Validation.
    Fernandes CO; Miles S; Lucena CJP; Cowan D
    J Med Internet Res; 2019 Nov; 21(11):e15406. PubMed ID: 31769762
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alarm Fatigue: Use of an Evidence-Based Alarm Management Strategy.
    Turmell JW; Coke L; Catinella R; Hosford T; Majeski A
    J Nurs Care Qual; 2017; 32(1):47-54. PubMed ID: 27500694
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Technological Distractions (Part 2): A Summary of Approaches to Manage Clinical Alarms With Intent to Reduce Alarm Fatigue.
    Winters BD; Cvach MM; Bonafide CP; Hu X; Konkani A; O'Connor MF; Rothschild JM; Selby NM; Pelter MM; McLean B; Kane-Gill SL;
    Crit Care Med; 2018 Jan; 46(1):130-137. PubMed ID: 29112077
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The heuristics of nurse responsiveness to critical patient monitor and ventilator alarms in a private room neonatal intensive care unit.
    Joshi R; Mortel HV; Feijs L; Andriessen P; Pul CV
    PLoS One; 2017; 12(10):e0184567. PubMed ID: 28981515
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contribution of Electrocardiographic Accelerated Ventricular Rhythm Alarms to Alarm Fatigue.
    Suba S; Sandoval CP; Zègre-Hemsey JK; Hu X; Pelter MM
    Am J Crit Care; 2019 May; 28(3):222-229. PubMed ID: 31043402
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.