BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

538 related articles for article (PubMed ID: 26539879)

  • 1. Phosphoproteomics in the Age of Rapid and Deep Proteome Profiling.
    Riley NM; Coon JJ
    Anal Chem; 2016 Jan; 88(1):74-94. PubMed ID: 26539879
    [No Abstract]   [Full Text] [Related]  

  • 2. 2012 ASMS Fall Workshop: mass spectrometry-based phosphorylation analysis and phosphoproteomics.
    Tao WA; Coon J
    J Am Soc Mass Spectrom; 2013 Mar; 24(3):464-5. PubMed ID: 23381688
    [No Abstract]   [Full Text] [Related]  

  • 3. Improving Phosphoproteomics Profiling Using Data-Independent Mass Spectrometry.
    Srinivasan A; Sing JC; Gingras AC; Röst HL
    J Proteome Res; 2022 Aug; 21(8):1789-1799. PubMed ID: 35877786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphopeptide enrichment using offline titanium dioxide columns for phosphoproteomics.
    Yu LR; Veenstra T
    Methods Mol Biol; 2013; 1002():93-103. PubMed ID: 23625397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionalized soluble nanopolymers for phosphoproteome analysis.
    Iliuk A; Jayasundera K; Schluttenhofer R; Tao WA
    Methods Mol Biol; 2011; 790():277-85. PubMed ID: 21948422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplexed quantitative phosphoproteomics of cell line and tissue samples.
    Kreuzer J; Edwards A; Haas W
    Methods Enzymol; 2019; 626():41-65. PubMed ID: 31606085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A data-independent acquisition-based global phosphoproteomics system enables deep profiling.
    Kitata RB; Choong WK; Tsai CF; Lin PY; Chen BS; Chang YC; Nesvizhskii AI; Sung TY; Chen YJ
    Nat Commun; 2021 May; 12(1):2539. PubMed ID: 33953186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved method of phosphopeptides enrichment using biphasic phosphate-binding tag/C18 tip for versatile analysis of phosphorylation dynamics.
    Nabetani T; Kim YJ; Watanabe M; Ohashi Y; Kamiguchi H; Hirabayashi Y
    Proteomics; 2009 Dec; 9(24):5525-33. PubMed ID: 19834909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics.
    Batth TS; Francavilla C; Olsen JV
    J Proteome Res; 2014 Dec; 13(12):6176-86. PubMed ID: 25338131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capillary Zone Electrophoresis-Tandem Mass Spectrometry for Large-Scale Phosphoproteomics with the Production of over 11,000 Phosphopeptides from the Colon Carcinoma HCT116 Cell Line.
    Chen D; Ludwig KR; Krokhin OV; Spicer V; Yang Z; Shen X; Hummon AB; Sun L
    Anal Chem; 2019 Feb; 91(3):2201-2208. PubMed ID: 30624053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of phosphoproteome analyses using FAIMS and decision tree fragmentation. application to the insulin signaling pathway in Drosophila melanogaster S2 cells.
    Bridon G; Bonneil E; Muratore-Schroeder T; Caron-Lizotte O; Thibault P
    J Proteome Res; 2012 Feb; 11(2):927-40. PubMed ID: 22059388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallel reaction monitoring on a Q Exactive mass spectrometer increases reproducibility of phosphopeptide detection in bacterial phosphoproteomics measurements.
    Taumer C; Griesbaum L; Kovacevic A; Soufi B; Nalpas NC; Macek B
    J Proteomics; 2018 Oct; 189():60-66. PubMed ID: 29605292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of MEK inhibitors GSK1120212 and PD0325901 in vivo using 10-plex quantitative proteomics and phosphoproteomics.
    Paulo JA; McAllister FE; Everley RA; Beausoleil SA; Banks AS; Gygi SP
    Proteomics; 2015 Jan; 15(2-3):462-73. PubMed ID: 25195567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multi-purpose, regenerable, proteome-scale, human phosphoserine resource for phosphoproteomics.
    Gassaway BM; Li J; Rad R; Mintseris J; Mohler K; Levy T; Aguiar M; Beausoleil SA; Paulo JA; Rinehart J; Huttlin EL; Gygi SP
    Nat Methods; 2022 Nov; 19(11):1371-1375. PubMed ID: 36280721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative phosphoproteomics reveals evolutionary and functional conservation of phosphorylation across eukaryotes.
    Boekhorst J; van Breukelen B; Heck A; Snel B
    Genome Biol; 2008 Oct; 9(10):R144. PubMed ID: 18828897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass Spectrometry-Based Proteomics for Analysis of Hydrophilic Phosphopeptides.
    Tsai CF; Smith JS; Eiger DS; Martin K; Liu T; Smith RD; Shi T; Rajagopal S; Jacobs JM
    Methods Mol Biol; 2021; 2259():247-257. PubMed ID: 33687720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphoproteome profile of Fusarium graminearum grown in vitro under nonlimiting conditions.
    Rampitsch C; Tinker NA; Subramaniam R; Barkow-Oesterreicher S; Laczko E
    Proteomics; 2012 Apr; 12(7):1002-5. PubMed ID: 22522806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid Shotgun Phosphoproteomics Analysis.
    Carrera M; Cañas B; Lopez-Ferrer D
    Methods Mol Biol; 2021; 2259():259-268. PubMed ID: 33687721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances and challenges in plant phosphoproteomics.
    Silva-Sanchez C; Li H; Chen S
    Proteomics; 2015 Mar; 15(5-6):1127-41. PubMed ID: 25429768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mass spectrometry-based characterization of the vitreous phosphoproteome.
    Tamburro D; Facchiano F; Petricoin EF; Liotta LA; Zhou W
    Proteomics Clin Appl; 2010 Nov; 4(10-11):839-46. PubMed ID: 21137027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.