These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

538 related articles for article (PubMed ID: 26539879)

  • 21. Analytical strategies in mass spectrometry-based phosphoproteomics.
    Rosenqvist H; Ye J; Jensen ON
    Methods Mol Biol; 2011; 753():183-213. PubMed ID: 21604124
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isobaric labeling-based relative quantification in shotgun proteomics.
    Rauniyar N; Yates JR
    J Proteome Res; 2014 Dec; 13(12):5293-309. PubMed ID: 25337643
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phosphoproteome analysis of the pathogenic bacterium Helicobacter pylori reveals over-representation of tyrosine phosphorylation and multiply phosphorylated proteins.
    Ge R; Sun X; Xiao C; Yin X; Shan W; Chen Z; He QY
    Proteomics; 2011 Apr; 11(8):1449-61. PubMed ID: 21360674
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SILAC-Based Quantitative Phosphoproteomics in Yeast.
    Hernáez ML; Gil C
    Methods Mol Biol; 2023; 2603():103-115. PubMed ID: 36370273
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-Density, Targeted Monitoring of Tyrosine Phosphorylation Reveals Activated Signaling Networks in Human Tumors.
    Stopfer LE; Flower CT; Gajadhar AS; Patel B; Gallien S; Lopez-Ferrer D; White FM
    Cancer Res; 2021 May; 81(9):2495-2509. PubMed ID: 33509940
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphoproteomics profiling of human skin fibroblast cells reveals pathways and proteins affected by low doses of ionizing radiation.
    Yang F; Waters KM; Miller JH; Gritsenko MA; Zhao R; Du X; Livesay EA; Purvine SO; Monroe ME; Wang Y; Camp DG; Smith RD; Stenoien DL
    PLoS One; 2010 Nov; 5(11):e14152. PubMed ID: 21152398
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid and deep proteomes by faster sequencing on a benchtop quadrupole ultra-high-field Orbitrap mass spectrometer.
    Kelstrup CD; Jersie-Christensen RR; Batth TS; Arrey TN; Kuehn A; Kellmann M; Olsen JV
    J Proteome Res; 2014 Dec; 13(12):6187-95. PubMed ID: 25349961
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent advances in enrichment and separation strategies for mass spectrometry-based phosphoproteomics.
    Yang C; Zhong X; Li L
    Electrophoresis; 2014 Dec; 35(24):3418-29. PubMed ID: 24687451
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphoproteome Profiling Reveals Molecular Mechanisms of Growth-Factor-Mediated Kinase Inhibitor Resistance in EGFR-Overexpressing Cancer Cells.
    Koch H; Wilhelm M; Ruprecht B; Beck S; Frejno M; Klaeger S; Kuster B
    J Proteome Res; 2016 Dec; 15(12):4490-4504. PubMed ID: 27794612
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphoproteomics-Based Profiling of Kinase Activities in Cancer Cells.
    Wirbel J; Cutillas P; Saez-Rodriguez J
    Methods Mol Biol; 2018; 1711():103-132. PubMed ID: 29344887
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Freezing effects on the acute myeloid leukemia cell proteome and phosphoproteome revealed using optimal quantitative workflows.
    Aasebø E; Mjaavatten O; Vaudel M; Farag Y; Selheim F; Berven F; Bruserud Ø; Hernandez-Valladares M
    J Proteomics; 2016 Aug; 145():214-225. PubMed ID: 27107777
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proteomics equipped with multiplexing toward ultra high throughput.
    Kim MS
    Proteomics; 2015 Jan; 15(2-3):183-4. PubMed ID: 25522341
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proteomic analysis of phosphorylation in cancer.
    Ruprecht B; Lemeer S
    Expert Rev Proteomics; 2014 Jun; 11(3):259-67. PubMed ID: 24666026
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protocol for high-throughput semi-automated label-free- or TMT-based phosphoproteome profiling.
    Koenig C; Martinez-Val A; Naicker P; Stoychev S; Jordaan J; Olsen JV
    STAR Protoc; 2023 Sep; 4(3):102536. PubMed ID: 37659085
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RUPE-phospho: Rapid Ultrasound-Assisted Peptide-Identification-Enhanced Phosphoproteomics Workflow for Microscale Samples.
    Huang Y; Shao X; Liu Y; Yan K; Ying W; He F; Wang D
    Anal Chem; 2023 Dec; 95(49):17974-17980. PubMed ID: 38011496
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeted mass spectrometry: An emerging powerful approach to unblock the bottleneck in phosphoproteomics.
    Osinalde N; Aloria K; Omaetxebarria MJ; Kratchmarova I
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Jun; 1055-1056():29-38. PubMed ID: 28441545
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Feasibility of large-scale phosphoproteomics with higher energy collisional dissociation fragmentation.
    Nagaraj N; D'Souza RC; Cox J; Olsen JV; Mann M
    J Proteome Res; 2010 Dec; 9(12):6786-94. PubMed ID: 20873877
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advances in the analysis of protein phosphorylation.
    Paradela A; Albar JP
    J Proteome Res; 2008 May; 7(5):1809-18. PubMed ID: 18327898
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isotope-labeling and affinity enrichment of phosphopeptides for proteomic analysis using liquid chromatography-tandem mass spectrometry.
    Kota U; Chien KY; Goshe MB
    Methods Mol Biol; 2009; 564():303-21. PubMed ID: 19544030
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative Profiling of Protein Abundance and Phosphorylation State in Plant Tissues Using Tandem Mass Tags.
    Song G; Montes C; Walley JW
    Methods Mol Biol; 2020; 2139():147-156. PubMed ID: 32462584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.