These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 26540031)

  • 41. Structure-based drug discovery for combating influenza virus by targeting the PA-PB1 interaction.
    Watanabe K; Ishikawa T; Otaki H; Mizuta S; Hamada T; Nakagaki T; Ishibashi D; Urata S; Yasuda J; Tanaka Y; Nishida N
    Sci Rep; 2017 Aug; 7(1):9500. PubMed ID: 28842649
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of an HTS assay for the search of anti-influenza agents targeting the interaction of viral RNA with the NS1 protein.
    Maroto M; Fernandez Y; Ortin J; Pelaez F; Cabello MA
    J Biomol Screen; 2008 Aug; 13(7):581-90. PubMed ID: 18594021
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of a novel multiple kinase inhibitor with potent antiviral activity against influenza virus by reducing viral polymerase activity.
    Sasaki Y; Kakisaka M; Chutiwitoonchai N; Tajima S; Hikono H; Saito T; Aida Y
    Biochem Biophys Res Commun; 2014 Jul; 450(1):49-54. PubMed ID: 24858693
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of novel membrane-associated prostaglandin E synthase-1 (mPGES-1) inhibitors with anti-influenza activities in vitro.
    Park JH; Park EB; Lee JY; Min JY
    Biochem Biophys Res Commun; 2016 Jan; 469(4):848-55. PubMed ID: 26673392
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Silymarin efficacy against influenza A virus replication.
    Song JH; Choi HJ
    Phytomedicine; 2011 Jul; 18(10):832-5. PubMed ID: 21377857
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
    Gao Y; Davies SP; Augustin M; Woodward A; Patel UA; Kovelman R; Harvey KJ
    Biochem J; 2013 Apr; 451(2):313-28. PubMed ID: 23398362
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Library-based discovery of DYRK1A/CLK1 inhibitors from natural product extracts.
    Grabher P; Durieu E; Kouloura E; Halabalaki M; Skaltsounis LA; Meijer L; Hamburger M; Potterat O
    Planta Med; 2012 Jun; 78(10):951-6. PubMed ID: 22673832
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inhibition of influenza virus replication by plant-derived isoquercetin.
    Kim Y; Narayanan S; Chang KO
    Antiviral Res; 2010 Nov; 88(2):227-35. PubMed ID: 20826184
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of Selective Clk1 and -4 Inhibitors for Cellular Depletion of Cancer-Relevant Proteins.
    ElHady AK; Abdel-Halim M; Abadi AH; Engel M
    J Med Chem; 2017 Jul; 60(13):5377-5391. PubMed ID: 28561591
    [TBL] [Abstract][Full Text] [Related]  

  • 50. New-generation screening assays for the detection of anti-influenza compounds targeting viral and host functions.
    Beyleveld G; White KM; Ayllon J; Shaw ML
    Antiviral Res; 2013 Oct; 100(1):120-32. PubMed ID: 23933115
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A novel lung explant model for the ex vivo study of efficacy and mechanisms of anti-influenza drugs.
    Nicholas B; Staples KJ; Moese S; Meldrum E; Ward J; Dennison P; Havelock T; Hinks TS; Amer K; Woo E; Chamberlain M; Singh N; North M; Pink S; Wilkinson TM; Djukanović R
    J Immunol; 2015 Jun; 194(12):6144-54. PubMed ID: 25934861
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Type II transmembrane serine proteases as potential target for anti-influenza drug discovery.
    Shin WJ; Seong BL
    Expert Opin Drug Discov; 2017 Nov; 12(11):1139-1152. PubMed ID: 28870104
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of a Real-Time Cell Analysing (RTCA) method as a fast and accurate screen for the selection of chikungunya virus replication inhibitors.
    Marlina S; Shu MH; AbuBakar S; Zandi K
    Parasit Vectors; 2015 Nov; 8():579. PubMed ID: 26553263
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluation of potential Myt1 kinase inhibitors by TR-FRET based binding assay.
    Rohe A; Göllner C; Wichapong K; Erdmann F; Al-Mazaideh GM; Sippl W; Schmidt M
    Eur J Med Chem; 2013 Mar; 61():41-8. PubMed ID: 22770610
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluation of the anti-neuraminidase activity of the traditional Chinese medicines and determination of the anti-influenza A virus effects of the neuraminidase inhibitory TCMs in vitro and in vivo.
    Tian L; Wang Z; Wu H; Wang S; Wang Y; Wang Y; Xu J; Wang L; Qi F; Fang M; Yu D; Fang X
    J Ethnopharmacol; 2011 Sep; 137(1):534-42. PubMed ID: 21699971
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bax Inhibitor-1 Acts as an Anti-Influenza Factor by Inhibiting ROS Mediated Cell Death and Augmenting Heme-Oxygenase 1 Expression in Influenza Virus Infected Cells.
    Hossain MK; Saha SK; Abdal Dayem A; Kim JH; Kim K; Yang GM; Choi HY; Cho SG
    Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29498634
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluation of substituted 6-arylquinazolin-4-amines as potent and selective inhibitors of cdc2-like kinases (Clk).
    Mott BT; Tanega C; Shen M; Maloney DJ; Shinn P; Leister W; Marugan JJ; Inglese J; Austin CP; Misteli T; Auld DS; Thomas CJ
    Bioorg Med Chem Lett; 2009 Dec; 19(23):6700-5. PubMed ID: 19837585
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of influenza polymerase inhibitors targeting C-terminal domain of PA through surface plasmon resonance screening.
    Lo CY; Li OT; Tang WP; Hu C; Wang GX; Ngo JC; Wan DC; Poon LL; Shaw PC
    Sci Rep; 2018 Feb; 8(1):2280. PubMed ID: 29396435
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An overview of cdc2-like kinase 1 (Clk1) inhibitors and their therapeutic indications.
    ElHady AK; El-Gamil DS; Abadi AH; Abdel-Halim M; Engel M
    Med Res Rev; 2023 Mar; 43(2):343-398. PubMed ID: 36262046
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inhibitors of dual-specificity tyrosine phosphorylation-regulated kinases (DYRK) exert a strong anti-herpesviral activity.
    Hutterer C; Milbradt J; Hamilton S; Zaja M; Leban J; Henry C; Vitt D; Steingruber M; Sonntag E; Zeitträger I; Bahsi H; Stamminger T; Rawlinson W; Strobl S; Marschall M
    Antiviral Res; 2017 Jul; 143():113-121. PubMed ID: 28400201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.