BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 26540047)

  • 1. Pooling and Analysis of Published in Vitro Data: A Proof of Concept Study for the Grouping of Nanoparticles.
    Simkó M; Tischler S; Mattsson MO
    Int J Mol Sci; 2015 Nov; 16(11):26211-36. PubMed ID: 26540047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genotoxic effects of zinc oxide nanoparticles.
    Heim J; Felder E; Tahir MN; Kaltbeitzel A; Heinrich UR; Brochhausen C; Mailänder V; Tremel W; Brieger J
    Nanoscale; 2015 May; 7(19):8931-8. PubMed ID: 25916659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes.
    Karlsson HL; Cronholm P; Gustafsson J; Möller L
    Chem Res Toxicol; 2008 Sep; 21(9):1726-32. PubMed ID: 18710264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity Study of Zinc Oxide Nanoparticles in Cell Culture and in Drosophila melanogaster.
    Ng CT; Ong CN; Yu LE; Bay BH; Baeg GH
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31609321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake and toxicity of copper oxide nanoparticles in cultured primary brain astrocytes.
    Bulcke F; Thiel K; Dringen R
    Nanotoxicology; 2014 Nov; 8(7):775-85. PubMed ID: 23889294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute exposure to ZnO nanoparticles induces autophagic immune cell death.
    Johnson BM; Fraietta JA; Gracias DT; Hope JL; Stairiker CJ; Patel PR; Mueller YM; McHugh MD; Jablonowski LJ; Wheatley MA; Katsikis PD
    Nanotoxicology; 2015; 9(6):737-48. PubMed ID: 25378273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles.
    Li Y; Zhang W; Niu J; Chen Y
    ACS Nano; 2012 Jun; 6(6):5164-73. PubMed ID: 22587225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zinc oxide nanoparticle induced autophagic cell death and mitochondrial damage via reactive oxygen species generation.
    Yu KN; Yoon TJ; Minai-Tehrani A; Kim JE; Park SJ; Jeong MS; Ha SW; Lee JK; Kim JS; Cho MH
    Toxicol In Vitro; 2013 Jun; 27(4):1187-95. PubMed ID: 23458966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Titanium Dioxide Nanoparticle (TiO
    Fattori ACM; Brassolatti P; Feitosa KA; Pedrino M; Correia RO; Albuquerque YR; Rodolpho JMA; Luna GLF; Cancino-Bernardi J; Zucolotto V; Speglich C; Rossi KNZP; Anibal FF
    Cell Physiol Biochem; 2023 Mar; 57(2):63-81. PubMed ID: 36945889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of endoplasmic reticulum stress inducer thapsigargin on the toxicity of ZnO or TiO
    Gu Y; Cheng S; Chen G; Shen Y; Li X; Jiang Q; Li J; Cao Y
    Toxicol Mech Methods; 2017 Mar; 27(3):191-200. PubMed ID: 27997269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and
    Ng CT; Yong LQ; Hande MP; Ong CN; Yu LE; Bay BH; Baeg GH
    Int J Nanomedicine; 2017; 12():1621-1637. PubMed ID: 28280330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties.
    Xia T; Kovochich M; Liong M; Mädler L; Gilbert B; Shi H; Yeh JI; Zink JI; Nel AE
    ACS Nano; 2008 Oct; 2(10):2121-34. PubMed ID: 19206459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicity of ZnO/TiO
    Baek S; Joo SH; Su C; Toborek M
    Environ Toxicol; 2020 Jan; 35(1):87-96. PubMed ID: 31515868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced reactive oxygen species overexpression by CuO nanoparticles in poorly differentiated hepatocellular carcinoma cells.
    Kung ML; Hsieh SL; Wu CC; Chu TH; Lin YC; Yeh BW; Hsieh S
    Nanoscale; 2015 Feb; 7(5):1820-9. PubMed ID: 25521936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low Concentrations of Zinc Oxide Nanoparticles Cause Severe Cytotoxicity Through Increased Intracellular Reactive Oxygen Species.
    Xie S; Zhu J; Yang D; Xu Y; Zhu J; He D
    J Biomed Nanotechnol; 2021 Dec; 17(12):2420-2432. PubMed ID: 34974865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of Calcium Titanate or Erbium Oxide Nanoparticles Induced Cytotoxicity and Genotoxicity in Normal HSF Cells.
    Mohamed HRH; Ibrahim MMH; Soliman ESM; Safwat G; Diab A
    Biol Trace Elem Res; 2023 May; 201(5):2311-2318. PubMed ID: 35907160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactive effects of copper oxide nanoparticles and light to green alga Chlamydomonas reinhardtii.
    Cheloni G; Marti E; Slaveykova VI
    Aquat Toxicol; 2016 Jan; 170():120-128. PubMed ID: 26655656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethylene accelerates copper oxide nanoparticle-induced toxicity at physiological, biochemical, and ultrastructural levels in rice seedlings.
    Azhar W; Khan AR; Salam A; Ulhassan Z; Qi J; Shah G; Liu Y; Chunyan Y; Yang S; Gan Y
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):26137-26149. PubMed ID: 36350451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunomodulation by different types of N-oxides in the hemocytes of the marine bivalve Mytilus galloprovincialis.
    Ciacci C; Canonico B; Bilaniĉovă D; Fabbri R; Cortese K; Gallo G; Marcomini A; Pojana G; Canesi L
    PLoS One; 2012; 7(5):e36937. PubMed ID: 22606310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size influences the cytotoxicity of poly (lactic-co-glycolic acid) (PLGA) and titanium dioxide (TiO(2)) nanoparticles.
    Xiong S; George S; Yu H; Damoiseaux R; France B; Ng KW; Loo JS
    Arch Toxicol; 2013 Jun; 87(6):1075-86. PubMed ID: 22983807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.