These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 26540454)

  • 1. Kinematic and ground reaction force accommodation during weighted walking.
    James CR; Atkins LT; Yang HS; Dufek JS; Bates BT
    Hum Mov Sci; 2015 Dec; 44():327-37. PubMed ID: 26540454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An exploration of load accommodation strategies during walking with extremity-carried weights.
    James CR; Atkins LT; Dufek JS; Bates BT
    Hum Mov Sci; 2014 Jun; 35():17-29. PubMed ID: 24792361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of calcaneal bone competence from biomechanical accommodation variables measured during weighted walking.
    James CR; Atkins LT; Yang HS; Dufek JS; Bates BT
    Hum Mov Sci; 2017 Dec; 56(Pt B):37-45. PubMed ID: 29096182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of an expected twofold perturbation on able-bodied gait: Trunk flexion and uneven ground surface.
    AminiAghdam S; Blickhan R
    Gait Posture; 2018 Mar; 61():431-438. PubMed ID: 29477127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in postural sway and gait characteristics as a consequence of anterior load carriage.
    Roberts M; Talbot C; Kay A; Price M; Hill M
    Gait Posture; 2018 Oct; 66():139-145. PubMed ID: 30193176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Weighted vest effects on impact forces and joint work during vertical jump landings in men and women.
    Harry JR; James CR; Dufek JS
    Hum Mov Sci; 2019 Feb; 63():156-163. PubMed ID: 30553141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running.
    Jung Y; Jung M; Ryu J; Yoon S; Park SK; Koo S
    Gait Posture; 2016 Mar; 45():62-8. PubMed ID: 26979885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic changes in gait during low magnitude military load carriage.
    Majumdar D; Pal MS; Pramanik A; Majumdar D
    Ergonomics; 2013; 56(12):1917-27. PubMed ID: 24164415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of the six major gait determinants on the vertical center of mass trajectory and the vertical ground reaction force.
    Hayot C; Sakka S; Lacouture P
    Hum Mov Sci; 2013 Apr; 32(2):279-89. PubMed ID: 23725827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of constrained arm swing on vertical center of mass displacement during walking.
    Yang HS; Atkins LT; Jensen DB; James CR
    Gait Posture; 2015 Oct; 42(4):430-4. PubMed ID: 26234472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of prolonged load carriage on ground reaction forces, lower limb kinematics and spatio-temporal parameters in female recreational hikers.
    Simpson KM; Munro BJ; Steele JR
    Ergonomics; 2012; 55(3):316-26. PubMed ID: 22409169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gait strategies to reduce the dynamic joint load in the lower limbs during a loading response in young healthy adults.
    Tajima T; Tateuchi H; Koyama Y; Ikezoe T; Ichihashi N
    Hum Mov Sci; 2018 Apr; 58():260-267. PubMed ID: 29524851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of load carriage and footwear on lower extremity kinetics and kinematics during overground walking.
    Dames KD; Smith JD
    Gait Posture; 2016 Oct; 50():207-211. PubMed ID: 27649512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of obesity on the biomechanics of walking at different speeds.
    Browning RC; Kram R
    Med Sci Sports Exerc; 2007 Sep; 39(9):1632-41. PubMed ID: 17805097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of trunk flexion on able-bodied gait.
    Saha D; Gard S; Fatone S
    Gait Posture; 2008 May; 27(4):653-60. PubMed ID: 17920272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How do load carriage and walking speed influence trunk coordination and stride parameters?
    LaFiandra M; Wagenaar RC; Holt KG; Obusek JP
    J Biomech; 2003 Jan; 36(1):87-95. PubMed ID: 12485642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of thigh holster use on kinematics and kinetics of active duty police officers.
    Larsen LB; Tranberg R; Ramstrand N
    Clin Biomech (Bristol, Avon); 2016 Aug; 37():77-82. PubMed ID: 27380202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Men and women adopt similar walking mechanics and muscle activation patterns during load carriage.
    Silder A; Delp SL; Besier T
    J Biomech; 2013 Sep; 46(14):2522-8. PubMed ID: 23968555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of unilateral load carriage on postures and gait symmetry in ground reaction force during walking.
    Zhang XA; Ye M; Wang CT
    Comput Methods Biomech Biomed Engin; 2010 Jun; 13(3):339-44. PubMed ID: 20521188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primarily hip-borne load carriage does not alter biomechanical risk factors for overuse injuries in soldiers.
    Lenton GK; Saxby DJ; Lloyd DG; Billing D; Higgs J; Doyle TLA
    J Sci Med Sport; 2019 Feb; 22(2):158-163. PubMed ID: 30595163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.