These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 26540516)

  • 1. Intracellular accumulation of trehalose and glycogen in an extreme oligotroph, Rhodococcus erythropolis N9T-4.
    Yano T; Funamizu Y; Yoshida N
    Biosci Biotechnol Biochem; 2016; 80(3):610-3. PubMed ID: 26540516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional analysis of putative transporters involved in oligotrophic growth of Rhodococcus erythropolis N9T-4.
    Matsuoka T; Yoshida N
    Appl Microbiol Biotechnol; 2019 May; 103(10):4167-4175. PubMed ID: 30953120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A unique intracellular compartment formed during the oligotrophic growth of Rhodococcus erythropolis N9T-4.
    Yoshida N; Yano T; Kedo K; Fujiyoshi T; Nagai R; Iwano M; Taguchi E; Nishida T; Takagi H
    Appl Microbiol Biotechnol; 2017 Jan; 101(1):331-340. PubMed ID: 27717963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilization of atmospheric ammonia by an extremely oligotrophic bacterium, Rhodococcus erythropolis N9T-4.
    Yoshida N; Inaba S; Takagi H
    J Biosci Bioeng; 2014 Jan; 117(1):28-32. PubMed ID: 23849805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Establishment of an effective oligotrophic cultivation system for Rhodococcus erythropolis N9T-4.
    Matsuoka T; Yoshida N
    Biosci Biotechnol Biochem; 2018 Sep; 82(9):1652-1655. PubMed ID: 29862898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a transcriptional regulator for oligotrophy-responsive promoter in
    Ikegaya R; Shintani M; Kimbara K; Fakuda M; Yoshida N
    Biosci Biotechnol Biochem; 2020 Apr; 84(4):865-868. PubMed ID: 31884880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An extremely oligotrophic bacterium, Rhodococcus erythropolis N9T-4, isolated from crude oil.
    Ohhata N; Yoshida N; Egami H; Katsuragi T; Tani Y; Takagi H
    J Bacteriol; 2007 Oct; 189(19):6824-31. PubMed ID: 17675378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The glyoxylate shunt is essential for CO2-requiring oligotrophic growth of Rhodococcus erythropolis N9T-4.
    Yano T; Yoshida N; Yu F; Wakamatsu M; Takagi H
    Appl Microbiol Biotechnol; 2015 Jul; 99(13):5627-37. PubMed ID: 25750047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oligotrophic Gene Expression in
    Ikeda Y; Kishimoto M; Shintani M; Yoshida N
    Microorganisms; 2022 Aug; 10(9):. PubMed ID: 36144327
    [No Abstract]   [Full Text] [Related]  

  • 10. Carbon monoxide utilization of an extremely oligotrophic bacterium, Rhodococcus erythropolis N9T-4.
    Yano T; Yoshida N; Takagi H
    J Biosci Bioeng; 2012 Jul; 114(1):53-5. PubMed ID: 22561879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene expression analysis of methylotrophic oxidoreductases involved in the oligotrophic growth of Rhodococcus erythropolis N9T-4.
    Yoshida N; Hayasaki T; Takagi H
    Biosci Biotechnol Biochem; 2011; 75(1):123-7. PubMed ID: 21228466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of biosurfactants produced by the oil-degrading bacterium Rhodococcus erythropolis S67 at low temperature.
    Luong TM; Ponamoreva ON; Nechaeva IA; Petrikov KV; Delegan YA; Surin AK; Linklater D; Filonov AE
    World J Microbiol Biotechnol; 2018 Jan; 34(2):20. PubMed ID: 29302805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of a trehalose lipid biosurfactant produced by Rhodococcus erythropolis 51T7 with a secretory phospholipase A2.
    Zaragoza A; Teruel JA; Aranda FJ; Ortiz A
    J Colloid Interface Sci; 2013 Oct; 408():132-7. PubMed ID: 23948458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Comparative analysis of glycogen and trehalose accumulation in methylotrophic and nonmethylotrophic yeasts].
    Turkel S
    Mikrobiologiia; 2006; 75(6):737-41. PubMed ID: 17205796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and structural characterisation of novel trehalose dinocardiomycolates from n-alkane-grown Rhodococcus opacus 1CP.
    Niescher S; Wray V; Lang S; Kaschabek SR; Schlömann M
    Appl Microbiol Biotechnol; 2006 May; 70(5):605-11. PubMed ID: 16133336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors affecting accumulation and degradation of curdlan, trehalose and glycogen in cultures of Cellulomonas flavigena strain KU (ATCC 53703).
    Siriwardana LS; Gall AR; Buller CS; Esch SW; Kenyon WJ
    Antonie Van Leeuwenhoek; 2011 Mar; 99(3):681-95. PubMed ID: 21190083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Draft genome sequence of Rhodococcus erythropolis B7g, a biosurfactant producing actinobacterium.
    Retamal-Morales G; Heine T; Tischler JS; Erler B; Gröning JAD; Kaschabek SR; Schlömann M; Levicán G; Tischler D
    J Biotechnol; 2018 Aug; 280():38-41. PubMed ID: 29879458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in glycogen and trehalose content of Streptomyces brasiliensis hyphae during growth in liquid cultures under sporulating and non-sporulating conditions.
    Rueda B; Miguélez EM; Hardisson C; Manzanal MB
    FEMS Microbiol Lett; 2001 Jan; 194(2):181-5. PubMed ID: 11164305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycogenformation by Rhodococcus species and the effect of inhibition of lipid biosynthesis on glycogen accumulation in Rhodococcus opacus PD630.
    Hernández MA; Alvarez HM
    FEMS Microbiol Lett; 2010 Nov; 312(1):93-9. PubMed ID: 21069909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycogen and trehalose accumulation during colony development in Streptomyces antibioticus.
    Braña AF; Méndez C; Díaz LA; Manzanal MB; Hardisson C
    J Gen Microbiol; 1986 May; 132(5):1319-26. PubMed ID: 3534138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.