These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 26540542)
1. Effect of interaction between anionic surfactants and poly(piperazine-amide) nanofiltration membranes used for chromium(III) recovery from saline solution. Religa P; Kowalik-Klimczak A Water Sci Technol; 2015; 72(10):1803-9. PubMed ID: 26540542 [TBL] [Abstract][Full Text] [Related]
2. Scaling of nanofiltration membranes used for chromium(III) ions recovery from salt solutions. Kowalik-Klimczak A; Gierycz P Water Sci Technol; 2017 Dec; 76(11-12):3135-3141. PubMed ID: 29210699 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of asymmetric poly (m-phenylene isophthalamide) nanofiltration membrane for chromium (VI) removal. Ren X; Zhao C; Du S; Wang T; Luan Z; Wang J; Hou D J Environ Sci (China); 2010; 22(9):1335-41. PubMed ID: 21174963 [TBL] [Abstract][Full Text] [Related]
4. Pentachlorophenol removal from water using surfactant-enhanced filtration through low-pressure thin film composite membranes. Kumar Y; Popat KM; Brahmbhatt H; Ganguly B; Bhattacharya A J Hazard Mater; 2008 Jun; 154(1-3):426-31. PubMed ID: 18079056 [TBL] [Abstract][Full Text] [Related]
5. Effect of solution chemistry and operating conditions on the nanofiltration of acid dyes by a nanocomposite membrane. Akbari A; Homayoonfal M; Jabbari V Water Sci Technol; 2011; 64(12):2404-9. PubMed ID: 22170834 [TBL] [Abstract][Full Text] [Related]
6. Achieving low concentrations of chromium in drinking water by nanofiltration: membrane performance and selection. Giagnorio M; Ruffino B; Grinic D; Steffenino S; Meucci L; Zanetti MC; Tiraferri A Environ Sci Pollut Res Int; 2018 Sep; 25(25):25294-25305. PubMed ID: 29946838 [TBL] [Abstract][Full Text] [Related]
7. Improved antifouling properties of polyamide nanofiltration membranes by reducing the density of surface carboxyl groups. Mo Y; Tiraferri A; Yip NY; Adout A; Huang X; Elimelech M Environ Sci Technol; 2012 Dec; 46(24):13253-61. PubMed ID: 23205860 [TBL] [Abstract][Full Text] [Related]
8. UV-photo graft functionalization of polyethersulfone membrane with strong polyelectrolyte hydrogel and its application for nanofiltration. Bernstein R; Antón E; Ulbricht M ACS Appl Mater Interfaces; 2012 Jul; 4(7):3438-46. PubMed ID: 22708807 [TBL] [Abstract][Full Text] [Related]
9. Synergistic effects of polymers and surfactants on depletion forces. Tulpar A; Tilton RD; Walz JY Langmuir; 2007 Apr; 23(8):4351-7. PubMed ID: 17316036 [TBL] [Abstract][Full Text] [Related]
10. Custom-Tailoring Loose Nanofiltration Membrane for Precise Biomolecule Fractionation: New Insight into Post-Treatment Mechanisms. Guo S; Chen X; Wan Y; Feng S; Luo J ACS Appl Mater Interfaces; 2020 Mar; 12(11):13327-13337. PubMed ID: 32109041 [TBL] [Abstract][Full Text] [Related]
11. A novel positively charged membrane based on polyamide thin-film composite made by cross-linking for nanofiltration. Akbari A; Fakharshakeri Z; Mojallali Rostami SM Water Sci Technol; 2016; 73(4):776-89. PubMed ID: 26901720 [TBL] [Abstract][Full Text] [Related]
12. Preparation, characterization and performance of poly(m-phenylene isophthalamide)/organically modified montmorillonite nanocomposite membranes in removal of perfluorooctane sulfonate. Luo Q; Liu Y; Liu G; Zhao C J Environ Sci (China); 2016 Aug; 46():126-33. PubMed ID: 27521944 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of Antiswelling Loose Nanofiltration Membranes via a "Selective-Etching-Induced Reinforcing" Strategy for Bioseparation. Guo S; Zhang H; Chen X; Feng S; Wan Y; Luo J ACS Appl Mater Interfaces; 2021 Apr; 13(16):19312-19323. PubMed ID: 33871259 [TBL] [Abstract][Full Text] [Related]
14. Ionic surfactant aggregates in saline solutions: sodium dodecyl sulfate (SDS) in the presence of excess sodium chloride (NaCl) or calcium chloride (CaCl(2)). Sammalkorpi M; Karttunen M; Haataja M J Phys Chem B; 2009 Apr; 113(17):5863-70. PubMed ID: 19344100 [TBL] [Abstract][Full Text] [Related]
15. Surfactant and temperature effects on paraben transport through silicone membranes. Waters LJ; Dennis L; Bibi A; Mitchell JC Colloids Surf B Biointerfaces; 2013 Aug; 108():23-8. PubMed ID: 23511625 [TBL] [Abstract][Full Text] [Related]
16. Preparation of three-bore hollow fiber charged nanofiltration membrane for separation of organics and salts. Deng J; Zhang Y; Liu J; Zhang H Water Sci Technol; 2012; 65(1):171-6. PubMed ID: 22173422 [TBL] [Abstract][Full Text] [Related]
17. Giant extracellular Glossoscolex paulistus Hemoglobin (HbGp) upon interaction with cethyltrimethylammonium chloride (CTAC) and sodium dodecyl sulphate (SDS) surfactants: Dissociation of oligomeric structure and autoxidation. Santiago PS; Moreira LM; de Almeida EV; Tabak M Biochim Biophys Acta; 2007 Apr; 1770(4):506-17. PubMed ID: 17196340 [TBL] [Abstract][Full Text] [Related]
19. Swelling and morphology of the skin layer of polyamide composite membranes: an atomic force microscopy study. Freger V Environ Sci Technol; 2004 Jun; 38(11):3168-75. PubMed ID: 15224751 [TBL] [Abstract][Full Text] [Related]
20. A new concept in polymeric thin-film composite nanofiltration membranes with antibacterial properties. Mollahosseini A; Rahimpour A Biofouling; 2013; 29(5):537-48. PubMed ID: 23682668 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]