These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 26540730)

  • 21. The molecular yo-yo method: live jump detection improves throughput of single-molecule force spectroscopy for out-of-equilibrium transitions.
    Mack AH; Schlingman DJ; Kamenetska M; Collins R; Regan L; Mochrie SG
    Rev Sci Instrum; 2013 Aug; 84(8):085119. PubMed ID: 24007119
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stochastic simulation of single-molecule pulling experiments.
    Gupta VK
    Eur Phys J E Soft Matter; 2014 Oct; 37(10):99. PubMed ID: 25348662
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pulling geometry-induced errors in single molecule force spectroscopy measurements.
    Ke C; Jiang Y; Rivera M; Clark RL; Marszalek PE
    Biophys J; 2007 May; 92(9):L76-8. PubMed ID: 17324999
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Force probe simulations of a reversibly rebinding system: Impact of pulling device stiffness.
    Jaschonek S; Diezemann G
    J Chem Phys; 2017 Mar; 146(12):124901. PubMed ID: 28388162
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Beyond the conventional description of dynamic force spectroscopy of adhesion bonds.
    Dudko OK; Filippov AE; Klafter J; Urbakh M
    Proc Natl Acad Sci U S A; 2003 Sep; 100(20):11378-81. PubMed ID: 13679588
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-speed force spectroscopy unfolds titin at the velocity of molecular dynamics simulations.
    Rico F; Gonzalez L; Casuso I; Puig-Vidal M; Scheuring S
    Science; 2013 Nov; 342(6159):741-3. PubMed ID: 24202172
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Model accounting for the effects of pulling-device stiffness in the analyses of single-molecule force measurements.
    Maitra A; Arya G
    Phys Rev Lett; 2010 Mar; 104(10):108301. PubMed ID: 20366455
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An Exactly Solvable Stochastic Kinetic Theory of Single-Molecule Force Experiments.
    Kundu P; Saha S; Gangopadhyay G
    J Phys Chem B; 2020 Sep; 124(36):7735-7744. PubMed ID: 32790363
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Decoding the mechanical fingerprints of biomolecules.
    Dudko OK
    Q Rev Biophys; 2016 Jan; 49():e3. PubMed ID: 26498560
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Directly measuring single-molecule heterogeneity using force spectroscopy.
    Hinczewski M; Hyeon C; Thirumalai D
    Proc Natl Acad Sci U S A; 2016 Jul; 113(27):E3852-61. PubMed ID: 27317744
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Force-dependent fragility in RNA hairpins.
    Manosas M; Collin D; Ritort F
    Phys Rev Lett; 2006 Jun; 96(21):218301. PubMed ID: 16803276
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single-molecule pulling and the folding of donor-acceptor oligorotaxanes: phenomenology and interpretation.
    Franco I; Schatz GC; Ratner MA
    J Chem Phys; 2009 Sep; 131(12):124902. PubMed ID: 19791916
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unfolding of globular polymers by external force.
    Bell S; Terentjev EM
    J Chem Phys; 2015 Nov; 143(18):184902. PubMed ID: 26567679
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probing the mechanical folding kinetics of TAR RNA by hopping, force-jump, and force-ramp methods.
    Li PT; Collin D; Smith SB; Bustamante C; Tinoco I
    Biophys J; 2006 Jan; 90(1):250-60. PubMed ID: 16214869
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antibody-unfolding and metastable-state binding in force spectroscopy and recognition imaging.
    Kaur P; Qiang-Fu ; Fuhrmann A; Ros R; Kutner LO; Schneeweis LA; Navoa R; Steger K; Xie L; Yonan C; Abraham R; Grace MJ; Lindsay S
    Biophys J; 2011 Jan; 100(1):243-50. PubMed ID: 21190677
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Topography of the free-energy landscape probed via mechanical unfolding of proteins.
    Kirmizialtin S; Huang L; Makarov DE
    J Chem Phys; 2005 Jun; 122(23):234915. PubMed ID: 16008495
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extraction of accurate biomolecular parameters from single-molecule force spectroscopy experiments.
    Farrance OE; Paci E; Radford SE; Brockwell DJ
    ACS Nano; 2015 Feb; 9(2):1315-24. PubMed ID: 25646767
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Order statistics theory of unfolding of multimeric proteins.
    Zhmurov A; Dima RI; Barsegov V
    Biophys J; 2010 Sep; 99(6):1959-68. PubMed ID: 20858442
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SpyTag/SpyCatcher tether as a fingerprint and force marker in single-molecule force spectroscopy experiments.
    Guo Z; Hong H; Sun H; Zhang X; Wu CX; Li B; Cao Y; Chen H
    Nanoscale; 2021 Jul; 13(25):11262-11269. PubMed ID: 34155491
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Non-Markov bond model for dynamic force spectroscopy.
    Bullerjahn JT; Sturm S; Kroy K
    J Chem Phys; 2020 Feb; 152(6):064104. PubMed ID: 32061238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.