These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 26541071)

  • 1. Computation of the effective mechanical response of biological networks accounting for large configuration changes.
    El Nady K; Ganghoffer JF
    J Mech Behav Biomed Mater; 2016 May; 58():28-44. PubMed ID: 26541071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equivalent mechanical properties of biological membranes from lattice homogenization.
    Assidi M; Dos Reis F; Ganghoffer JF
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1833-45. PubMed ID: 22098882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization.
    Goda I; Assidi M; Belouettar S; Ganghoffer JF
    J Mech Behav Biomed Mater; 2012 Dec; 16():87-108. PubMed ID: 23178480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 3D elastic micropolar model of vertebral trabecular bone from lattice homogenization of the bone microstructure.
    Goda I; Assidi M; Ganghoffer JF
    Biomech Model Mechanobiol; 2014 Jan; 13(1):53-83. PubMed ID: 23579636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polydispersity controls the strength of semi-flexible polymer networks.
    Tehrani M; Ghalamzan Z; Sarvestani A
    Phys Biol; 2018 Jun; 15(6):066002. PubMed ID: 29771241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of couple-stress moduli of vertebral trabecular bone based on the 3D internal architectures.
    Goda I; Ganghoffer JF
    J Mech Behav Biomed Mater; 2015 Nov; 51():99-118. PubMed ID: 26232945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micromechanical model for elasticity of the cell cytoskeleton.
    Roy S; Qi HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061916. PubMed ID: 18643309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison between spring network models and continuum constitutive laws: application to the large deformation of a capsule in shear flow.
    Omori T; Ishikawa T; Barthès-Biesel D; Salsac AV; Walter J; Imai Y; Yamaguchi T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041918. PubMed ID: 21599211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new approach to model cross-linked actin networks: multi-scale continuum formulation and computational analysis.
    Unterberger MJ; Schmoller KM; Bausch AR; Holzapfel GA
    J Mech Behav Biomed Mater; 2013 Jun; 22():95-114. PubMed ID: 23601624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The stretching elasticity of biomembranes determines their line tension and bending rigidity.
    Deseri L; Zurlo G
    Biomech Model Mechanobiol; 2013 Nov; 12(6):1233-42. PubMed ID: 23460499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micromechanics of brain white matter tissue: A fiber-reinforced hyperelastic model using embedded element technique.
    Yousefsani SA; Shamloo A; Farahmand F
    J Mech Behav Biomed Mater; 2018 Apr; 80():194-202. PubMed ID: 29428702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonaffine rubber elasticity for stiff polymer networks.
    Heussinger C; Schaefer B; Frey E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031906. PubMed ID: 17930270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elasticity of the rod-shaped gram-negative eubacteria.
    Boulbitch A; Quinn B; Pink D
    Phys Rev Lett; 2000 Dec; 85(24):5246-9. PubMed ID: 11102232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear mechanics of soft composites: hyperelastic characterization of white matter tissue components.
    Yousefsani SA; Shamloo A; Farahmand F
    Biomech Model Mechanobiol; 2020 Jun; 19(3):1143-1153. PubMed ID: 31853724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective-medium approach for stiff polymer networks with flexible cross-links.
    Broedersz CP; Storm C; MacKintosh FC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061914. PubMed ID: 19658531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An affine continuum mechanical model for cross-linked F-actin networks with compliant linker proteins.
    Holzapfel GA; Unterberger MJ; Ogden RW
    J Mech Behav Biomed Mater; 2014 Oct; 38():78-90. PubMed ID: 25043658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical responses of the periodontal ligament based on an exponential hyperelastic model: a combined experimental and finite element method.
    Huang H; Tang W; Yan B; Wu B; Cao D
    Comput Methods Biomech Biomed Engin; 2016; 19(2):188-98. PubMed ID: 25648914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models.
    Boey SK; Boal DH; Discher DE
    Biophys J; 1998 Sep; 75(3):1573-83. PubMed ID: 9726958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elastic regimes of subisostatic athermal fiber networks.
    Licup AJ; Sharma A; MacKintosh FC
    Phys Rev E; 2016 Jan; 93(1):012407. PubMed ID: 26871101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fibril-based structural constitutive theory reveals the dominant role of network characteristics on the mechanical behavior of fibroblast-compacted collagen gels.
    Feng Z; Ishiguro Y; Fujita K; Kosawada T; Nakamura T; Sato D; Kitajima T; Umezu M
    Biomaterials; 2015 Oct; 67():365-81. PubMed ID: 26247391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.