These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 26541087)

  • 1. Light and the evolution of vision.
    Williams DL
    Eye (Lond); 2016 Feb; 30(2):173-8. PubMed ID: 26541087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of phototransduction, vertebrate photoreceptors and retina.
    Lamb TD
    Prog Retin Eye Res; 2013 Sep; 36():52-119. PubMed ID: 23792002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phototransduction and the evolution of photoreceptors.
    Fain GL; Hardie R; Laughlin SB
    Curr Biol; 2010 Feb; 20(3):R114-24. PubMed ID: 20144772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phototransduction in ganglion-cell photoreceptors.
    Berson DM
    Pflugers Arch; 2007 Aug; 454(5):849-55. PubMed ID: 17351786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amphioxus photoreceptors - insights into the evolution of vertebrate opsins, vision and circadian rhythmicity.
    Pergner J; Kozmik Z
    Int J Dev Biol; 2017; 61(10-11-12):665-681. PubMed ID: 29319115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarisation vision.
    Marshall J; Cronin TW
    Curr Biol; 2011 Feb; 21(3):R101-5. PubMed ID: 21300269
    [No Abstract]   [Full Text] [Related]  

  • 7. Residual photosensitivity in mice lacking both rod opsin and cone photoreceptor cyclic nucleotide gated channel 3 alpha subunit.
    Barnard AR; Appleford JM; Sekaran S; Chinthapalli K; Jenkins A; Seeliger M; Biel M; Humphries P; Douglas RH; Wenzel A; Foster RG; Hankins MW; Lucas RJ
    Vis Neurosci; 2004; 21(5):675-83. PubMed ID: 15683556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extraocular, rod-like photoreceptors in a flatworm express xenopsin photopigment.
    Rawlinson KA; Lapraz F; Ballister ER; Terasaki M; Rodgers J; McDowell RJ; Girstmair J; Criswell KE; Boldogkoi M; Simpson F; Goulding D; Cormie C; Hall B; Lucas RJ; Telford MJ
    Elife; 2019 Oct; 8():. PubMed ID: 31635694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Casting a genetic light on the evolution of eyes.
    Fernald RD
    Science; 2006 Sep; 313(5795):1914-8. PubMed ID: 17008522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional properties of opsins and their contribution to light-sensing physiology.
    Terakita A; Nagata T
    Zoolog Sci; 2014 Oct; 31(10):653-9. PubMed ID: 25284384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ocular Photoreception for Circadian Rhythm Entrainment in Mammals.
    Van Gelder RN; Buhr ED
    Annu Rev Vis Sci; 2016 Oct; 2():153-169. PubMed ID: 28532353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Insights from Genetic Data Sets on the Function and Evolution of Visual Systems: Introduction to a Virtual Symposium in The Biological Bulletin.
    Speiser DI; Kier WM
    Biol Bull; 2017 Aug; 233(1):1-2. PubMed ID: 29182500
    [No Abstract]   [Full Text] [Related]  

  • 13. Melanopsin and other novel mammalian opsins.
    Kumbalasiri T; Provencio I
    Exp Eye Res; 2005 Oct; 81(4):368-75. PubMed ID: 16005867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of opsins and phototransduction.
    Shichida Y; Matsuyama T
    Philos Trans R Soc Lond B Biol Sci; 2009 Oct; 364(1531):2881-95. PubMed ID: 19720651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C-terminal phosphorylation regulates the kinetics of a subset of melanopsin-mediated behaviors in mice.
    Somasundaram P; Wyrick GR; Fernandez DC; Ghahari A; Pinhal CM; Simmonds Richardson M; Rupp AC; Cui L; Wu Z; Brown RL; Badea TC; Hattar S; Robinson PR
    Proc Natl Acad Sci U S A; 2017 Mar; 114(10):2741-2746. PubMed ID: 28223508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolution of complexity in the visual systems of stomatopods: insights from transcriptomics.
    Porter ML; Speiser DI; Zaharoff AK; Caldwell RL; Cronin TW; Oakley TH
    Integr Comp Biol; 2013 Jul; 53(1):39-49. PubMed ID: 23727979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current advances in invertebrate vision: insights from patch-clamp studies of photoreceptors in apposition eyes.
    Frolov RV
    J Neurophysiol; 2016 Aug; 116(2):709-23. PubMed ID: 27250910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drosophila in vision research. The Friedenwald Lecture.
    Pak WL
    Invest Ophthalmol Vis Sci; 1995 Nov; 36(12):2340-57. PubMed ID: 7591624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein translocation in photoreceptor light adaptation: a common theme in vertebrate and invertebrate vision.
    Arshavsky VY
    Sci STKE; 2003 Oct; 2003(204):PE43. PubMed ID: 14560045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mammalian Near-Infrared Image Vision through Injectable and Self-Powered Retinal Nanoantennae.
    Ma Y; Bao J; Zhang Y; Li Z; Zhou X; Wan C; Huang L; Zhao Y; Han G; Xue T
    Cell; 2019 Apr; 177(2):243-255.e15. PubMed ID: 30827682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.