These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 26541100)

  • 1. Modeling and measurement of vesicle pools at the cone ribbon synapse: Changes in release probability are solely responsible for voltage-dependent changes in release.
    Thoreson WB; Van Hook MJ; Parmelee C; Curto C
    Synapse; 2016 Jan; 70(1):1-14. PubMed ID: 26541100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Release from the cone ribbon synapse under bright light conditions can be controlled by the opening of only a few Ca(2+) channels.
    Bartoletti TM; Jackman SL; Babai N; Mercer AJ; Kramer RH; Thoreson WB
    J Neurophysiol; 2011 Dec; 106(6):2922-35. PubMed ID: 21880934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vesicle pool size at the salamander cone ribbon synapse.
    Bartoletti TM; Babai N; Thoreson WB
    J Neurophysiol; 2010 Jan; 103(1):419-23. PubMed ID: 19923246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of presynaptic strength by controlling Ca2+ channel mobility: effects of cholesterol depletion on release at the cone ribbon synapse.
    Mercer AJ; Szalewski RJ; Jackman SL; Van Hook MJ; Thoreson WB
    J Neurophysiol; 2012 Jun; 107(12):3468-78. PubMed ID: 22442573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sharp Ca²⁺ nanodomains beneath the ribbon promote highly synchronous multivesicular release at hair cell synapses.
    Graydon CW; Cho S; Li GL; Kachar B; von Gersdorff H
    J Neurosci; 2011 Nov; 31(46):16637-50. PubMed ID: 22090491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms, pools, and sites of spontaneous vesicle release at synapses of rod and cone photoreceptors.
    Cork KM; Van Hook MJ; Thoreson WB
    Eur J Neurosci; 2016 Aug; 44(3):2015-27. PubMed ID: 27255664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adenosine inhibits voltage-dependent Ca2+ influx in cone photoreceptor terminals of the tiger salamander retina.
    Stella SL; Hu WD; Vila A; Brecha NC
    J Neurosci Res; 2007 Apr; 85(5):1126-37. PubMed ID: 17304584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calmodulin enhances ribbon replenishment and shapes filtering of synaptic transmission by cone photoreceptors.
    Van Hook MJ; Parmelee CM; Chen M; Cork KM; Curto C; Thoreson WB
    J Gen Physiol; 2014 Nov; 144(5):357-78. PubMed ID: 25311636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium regulates vesicle replenishment at the cone ribbon synapse.
    Babai N; Bartoletti TM; Thoreson WB
    J Neurosci; 2010 Nov; 30(47):15866-77. PubMed ID: 21106825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Presynaptic Group III mGluR Recruits Gβγ/SNARE Interactions to Inhibit Synaptic Transmission by Cone Photoreceptors in the Vertebrate Retina.
    Van Hook MJ; Babai N; Zurawski Z; Yim YY; Hamm HE; Thoreson WB
    J Neurosci; 2017 Apr; 37(17):4618-4634. PubMed ID: 28363980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signal transmission at invaginating cone photoreceptor synaptic contacts following deletion of the presynaptic cytomatrix protein Bassoon in mouse retina.
    Babai N; Gierke K; Müller T; Regus-Leidig H; Brandstätter JH; Feigenspan A
    Acta Physiol (Oxf); 2019 Jun; 226(2):e13241. PubMed ID: 30554473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantal mEPSCs and residual glutamate: how horizontal cell responses are shaped at the photoreceptor ribbon synapse.
    Cadetti L; Bartoletti TM; Thoreson WB
    Eur J Neurosci; 2008 May; 27(10):2575-86. PubMed ID: 18547244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of release kinetics and glutamate receptor properties in shaping rod-cone differences in EPSC kinetics in the salamander retina.
    Cadetti L; Tranchina D; Thoreson WB
    J Physiol; 2005 Dec; 569(Pt 3):773-88. PubMed ID: 16223761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms contributing to tonic release at the cone photoreceptor ribbon synapse.
    Innocenti B; Heidelberger R
    J Neurophysiol; 2008 Jan; 99(1):25-36. PubMed ID: 17989244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sources of protons and a role for bicarbonate in inhibitory feedback from horizontal cells to cones in Ambystoma tigrinum retina.
    Warren TJ; Van Hook MJ; Supuran CT; Thoreson WB
    J Physiol; 2016 Nov; 594(22):6661-6677. PubMed ID: 27345444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Location of release sites and calcium-activated chloride channels relative to calcium channels at the photoreceptor ribbon synapse.
    Mercer AJ; Rabl K; Riccardi GE; Brecha NC; Stella SL; Thoreson WB
    J Neurophysiol; 2011 Jan; 105(1):321-35. PubMed ID: 21084687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton-mediated feedback inhibition of presynaptic calcium channels at the cone photoreceptor synapse.
    Vessey JP; Stratis AK; Daniels BA; Da Silva N; Jonz MG; Lalonde MR; Baldridge WH; Barnes S
    J Neurosci; 2005 Apr; 25(16):4108-17. PubMed ID: 15843613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional Roles of Complexin 3 and Complexin 4 at Mouse Photoreceptor Ribbon Synapses.
    Babai N; Sendelbeck A; Regus-Leidig H; Fuchs M; Mertins J; Reim K; Brose N; Feigenspan A; Brandstätter JH
    J Neurosci; 2016 Jun; 36(25):6651-67. PubMed ID: 27335398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transmission at rod and cone ribbon synapses in the retina.
    Thoreson WB
    Pflugers Arch; 2021 Sep; 473(9):1469-1491. PubMed ID: 33779813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanodomain control of exocytosis is responsible for the signaling capability of a retinal ribbon synapse.
    Jarsky T; Tian M; Singer JH
    J Neurosci; 2010 Sep; 30(36):11885-95. PubMed ID: 20826653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.