These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 26541384)

  • 21. Advances in the Neuroscience of Intelligence: from Brain Connectivity to Brain Perturbation.
    Santarnecchi E; Rossi S
    Span J Psychol; 2016 Dec; 19():E94. PubMed ID: 27919314
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcranial magnetic stimulation, causal structure-function mapping and networks of functional relevance.
    Sack AT
    Curr Opin Neurobiol; 2006 Oct; 16(5):593-9. PubMed ID: 16949276
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep brain stimulation for neurodegenerative disease: a computational blueprint using dynamic causal modeling.
    Moran R
    Prog Brain Res; 2015; 222():125-46. PubMed ID: 26541379
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tinnitus: therapeutic use of superficial brain stimulation.
    Langguth B; De Ridder D
    Handb Clin Neurol; 2013; 116():441-67. PubMed ID: 24112915
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcranial magnetic stimulation: the method and application.
    Griskova I; Höppner J; Ruksenas O; Dapsys K
    Medicina (Kaunas); 2006; 42(10):798-804. PubMed ID: 17090978
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcranial magnetic stimulation in cognitive neuroscience--virtual lesion, chronometry, and functional connectivity.
    Pascual-Leone A; Walsh V; Rothwell J
    Curr Opin Neurobiol; 2000 Apr; 10(2):232-7. PubMed ID: 10753803
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulating the brain at work using noninvasive transcranial stimulation.
    McKinley RA; Bridges N; Walters CM; Nelson J
    Neuroimage; 2012 Jan; 59(1):129-37. PubMed ID: 21840408
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The use of transcranial magnetic stimulation in cognitive neuroscience: a new synthesis of methodological issues.
    Sandrini M; Umiltà C; Rusconi E
    Neurosci Biobehav Rev; 2011 Jan; 35(3):516-36. PubMed ID: 20599555
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Real-time estimation of electric fields induced by transcranial magnetic stimulation with deep neural networks.
    Yokota T; Maki T; Nagata T; Murakami T; Ugawa Y; Laakso I; Hirata A; Hontani H
    Brain Stimul; 2019; 12(6):1500-1507. PubMed ID: 31262697
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeting the neurophysiology of cognitive systems with transcranial alternating current stimulation.
    Fröhlich F; Sellers KK; Cordle AL
    Expert Rev Neurother; 2015 Feb; 15(2):145-67. PubMed ID: 25547149
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation.
    Thielscher A; Opitz A; Windhoff M
    Neuroimage; 2011 Jan; 54(1):234-43. PubMed ID: 20682353
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using interleaved transcranial magnetic stimulation/functional magnetic resonance imaging (fMRI) and dynamic causal modeling to understand the discrete circuit specific changes of medications: lamotrigine and valproic acid changes in motor or prefrontal effective connectivity.
    Li X; Large CH; Ricci R; Taylor JJ; Nahas Z; Bohning DE; Morgan P; George MS
    Psychiatry Res; 2011 Nov; 194(2):141-8. PubMed ID: 21924874
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Non-invasive Human Brain Stimulation in Cognitive Neuroscience: A Primer.
    Parkin BL; Ekhtiari H; Walsh VF
    Neuron; 2015 Sep; 87(5):932-45. PubMed ID: 26335641
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Two-Brains Hypothesis: Towards a guide for brain-brain and brain-machine interfaces.
    Goodman G; Poznanski RR; Cacha L; Bercovich D
    J Integr Neurosci; 2015 Sep; 14(3):281-93. PubMed ID: 26477360
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multimodal transcranial magnetic stimulation: using concurrent neuroimaging to reveal the neural network dynamics of noninvasive brain stimulation.
    Reithler J; Peters JC; Sack AT
    Prog Neurobiol; 2011 Jul; 94(2):149-65. PubMed ID: 21527312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multilevel computational models for predicting the cellular effects of noninvasive brain stimulation.
    Rahman A; Lafon B; Bikson M
    Prog Brain Res; 2015; 222():25-40. PubMed ID: 26541375
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The contribution of TMS-EEG coregistration in the exploration of the human cortical connectome.
    Bortoletto M; Veniero D; Thut G; Miniussi C
    Neurosci Biobehav Rev; 2015 Feb; 49():114-24. PubMed ID: 25541459
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Non-invasive brain stimulation in the detection of deception: scientific challenges and ethical consequences.
    Luber B; Fisher C; Appelbaum PS; Ploesser M; Lisanby SH
    Behav Sci Law; 2009; 27(2):191-208. PubMed ID: 19266592
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cognitive stimulation of the default-mode network modulates functional connectivity in healthy aging.
    De Marco M; Meneghello F; Duzzi D; Rigon J; Pilosio C; Venneri A
    Brain Res Bull; 2016 Mar; 121():26-41. PubMed ID: 26688237
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Consensus Paper: Probing Homeostatic Plasticity of Human Cortex With Non-invasive Transcranial Brain Stimulation.
    Karabanov A; Ziemann U; Hamada M; George MS; Quartarone A; Classen J; Massimini M; Rothwell J; Siebner HR
    Brain Stimul; 2015; 8(3):442-54. PubMed ID: 26050599
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.