These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 26541415)

  • 1. A hot-electron thermophotonic solar cell demonstrated by thermal up-conversion of sub-bandgap photons.
    Farrell DJ; Sodabanlu H; Wang Y; Sugiyama M; Okada Y
    Nat Commun; 2015 Nov; 6():8685. PubMed ID: 26541415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hot Carrier-Based Near-Field Thermophotovoltaic Energy Conversion.
    St-Gelais R; Bhatt GR; Zhu L; Fan S; Lipson M
    ACS Nano; 2017 Mar; 11(3):3001-3009. PubMed ID: 28287714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-nanowire, low-bandgap hot carrier solar cells with tunable open-circuit voltage.
    Limpert S; Burke A; Chen IJ; Anttu N; Lehmann S; Fahlvik S; Bremner S; Conibeer G; Thelander C; Pistol ME; Linke H
    Nanotechnology; 2017 Oct; 28(43):434001. PubMed ID: 28857751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermally enhanced photoluminescence for heat harvesting in photovoltaics.
    Manor A; Kruger N; Sabapathy T; Rotschild C
    Nat Commun; 2016 Oct; 7():13167. PubMed ID: 27762271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.
    Ten Cate S; Sandeep CS; Liu Y; Law M; Kinge S; Houtepen AJ; Schins JM; Siebbeles LD
    Acc Chem Res; 2015 Feb; 48(2):174-81. PubMed ID: 25607377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fundamental Efficiency Limit of Lead Iodide Perovskite Solar Cells.
    Pazos-Outón LM; Xiao TP; Yablonovitch E
    J Phys Chem Lett; 2018 Apr; 9(7):1703-1711. PubMed ID: 29537271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. About the Implementation of Frequency Conversion Processes in Solar Cell Device Simulations.
    Quandt A; Aslan T; Mokgosi I; Warmbier R; Ferrari M; Righini G
    Micromachines (Basel); 2018 Aug; 9(9):. PubMed ID: 30424368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficiency enhancement in a single bandgap silicon solar cell considering hot-carrier extraction using selective energy contacts.
    Shayan S; Matloub S; Rostami A
    Opt Express; 2021 Feb; 29(4):5068-5080. PubMed ID: 33726049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution processed infrared- and thermo-photovoltaics based on 0.7 eV bandgap PbS colloidal quantum dots.
    Bi Y; Bertran A; Gupta S; Ramiro I; Pradhan S; Christodoulou S; Majji SN; Akgul MZ; Konstantatos G
    Nanoscale; 2019 Jan; 11(3):838-843. PubMed ID: 30574637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the plasmonic photovoltaic.
    Mubeen S; Lee J; Lee WR; Singh N; Stucky GD; Moskovits M
    ACS Nano; 2014 Jun; 8(6):6066-73. PubMed ID: 24861280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of a hybrid photovoltaic/thermal (PV/T) collector system as a sustainable energy-harvest instrument in urban technology.
    Prasetyo SD; Prabowo AR; Arifin Z
    Heliyon; 2023 Feb; 9(2):e13390. PubMed ID: 36820025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering the Non-Radiative Recombination of Mixed-Halide Perovskites with Optimal Bandgap for Indoor Photovoltaics.
    Li Y; Li R; Lin Q
    Small; 2022 Jul; 18(26):e2202028. PubMed ID: 35616062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Practical roadmap and limits to nanostructured photovoltaics.
    Lunt RR; Osedach TP; Brown PR; Rowehl JA; Bulović V
    Adv Mater; 2011 Dec; 23(48):5712-27. PubMed ID: 22057647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The generalized Shockley-Queisser limit for nanostructured solar cells.
    Xu Y; Gong T; Munday JN
    Sci Rep; 2015 Sep; 5():13536. PubMed ID: 26329479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-field radiative heat transfer between parallel structures in the deep subwavelength regime.
    St-Gelais R; Zhu L; Fan S; Lipson M
    Nat Nanotechnol; 2016 Jun; 11(6):515-519. PubMed ID: 26950243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergizing Photo-Thermal H
    Tang S; Xing X; Yu W; Sun J; Xuan Y; Wang L; Xu Y; Hong H; Jin H
    iScience; 2020 Apr; 23(4):101012. PubMed ID: 32278287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermochemical solar hydrogen generation.
    Licht S
    Chem Commun (Camb); 2005 Oct; (37):4635-46. PubMed ID: 16175278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation.
    Chang C; Yang C; Liu Y; Tao P; Song C; Shang W; Wu J; Deng T
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23412-8. PubMed ID: 27537862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternating polyfluorenes collect solar light in polymer photovoltaics.
    Inganäs O; Zhang F; Andersson MR
    Acc Chem Res; 2009 Nov; 42(11):1731-9. PubMed ID: 19835413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.